Chapter 10.14 References and further reading

Abdel-Hamid, A.M., Solbiati, J.O., Cann, I.K.O., Sariaslani, S. & Gadd, G.M. (2013). Insights into lignin degradation and its potential industrial applications. Advances in Applied Microbiology, 82: 1-28. DOI:

Acin-Perez, R., Hoyos, B., Gong, J., Vinogradov, V., Fischman, D. A., Leitges, M., Borhan, B., Starkov, A., Manfredi, G. & Hammerling, U. Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. The FASEB Journal, 24: 5033-5042. DOI:

Acosta-Urdapilleta, M.L., Villegas, E., Estrada-Torres, A., Téllez-Téllez, M. & Díaz-Godínez, G. (2020). Antioxidant activity and proximal chemical composition of fruiting bodies of mushroom, Pleurotus spp. produced on wheat straw. Journal of Environmental Biology, 41: 1075-1081. DOI:

Agarwal, V. & Moore, B.S. (2014). Fungal polyketide engineering comes of age. Proceedings of the National Academy of Sciences of the United States of America, 111: 12278-12279.  DOI:

Ali, Y.B., Verger, R. & Abousalham, A. (2012). Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. In: Lipases and Phospholipases. Methods in Molecular Biology (Methods and Protocols), (ed G. Sandoval), vol 861: pp. 31-51. New York, USA: Humana Press/Springer International Publishing AG. DOI: VIEW on Amazon.

Anke, H. & Weber, R.W.S. (2006). White-rots, chlorine and the environment – a tale of many twists. Mycologist, 20: 83-89. DOI:

Ariño, J., Casamayor, A. & González, A. (2011). Type 2C protein phosphatases in fungi. Eukaryotic Cell, 10: 21-33. DOI:

Artzi, L., Bayer, E.A. & Moraïs, S. (2017). Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 15: 83-95. DOI:

Audrey, L.C.C., Desjardin, D.E., Tan, Y.S., Musa, M.Y. & Sabaratnam, V. (2015). Bioluminescent fungi from Peninsular Malaysia - a taxonomic and phylogenetic overview. Fungal Diversity, 70: 149-187. DOI:

Badaruddin, M., Holcombe, L.J., Wilson, R.A., Wang, Z.Y., Kershaw, M.J. & Talbot, N.J. (2013). Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLOS Pathogens, 9: article number e1003604. DOI:

Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B, 42: 441-451. DOI:

Ball, S., Colleoni, C., Cenci, U., Raj, J.N. & Tirtiaux, C. (2011). The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany, 62: 1775-1801. DOI:

Barriuso, J., Prieto, A. & Martínez, M.J. (2013). Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 14: article number 712 (8 pp). DOI:

Bayer, E.A., Lamed, R. & Himmel, M.E. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Current Opinion in Biotechnology, 18: 237–245.

Benoit, I., Coutinho, P.M., Schols, H.A., Gerlach, J.P., Henrissat B. & de Vries, R.P. (2012). Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics, 13: 321 (11 pp.). DOI:

Berry, E.A., Huang, L., Lee, D.W., Daldal, F., Nagai, K. & Minagawa, N. (2010). Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc1 complex. Biochimica et Biophysica Acta, Bioenergetics, 1797: 360-370. DOI:

Bertolini, M.C., Freitas, F.Z., de Paula, R.M., Cupertino, F.B. & Goncalves, R.D. (2012). Glycogen metabolism regulation in Neurospora crassa. In: Biocommunication of Fungi, (ed G. Witzany). Pp. 39-55. Dordrecht: Springer International Publishing AG. DOI: VIEW on Amazon.

Bills, G. & Gloer, J. (2016). Biologically active secondary metabolites from the fungi. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 1087-1119. Washington, DC: ASM Press. DOI: VIEW on Amazon.

Brakhage, A.A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11: 21-32. DOI:

Brakhage, A.A. & Schroeckh, V. (2011). Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genetics and Biology, 48: 15-22. DOI:

Bu’Lock, J. D. (1967). Essays in Biosynthesis and Microbial Development. New York: John Wiley & Sons. ISBN-10: 0471121002, ISBN-13: 978-0471121008. DOI: VIEW on Amazon.

Ceccaroli, P., Buffalini, M., Saltarelli, R., Barbieri, E., Polidori, E., Ottonello, S., Kohler, A., Tisserant, E., Martin, F. & Stocchi, V. (2011). Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytologist, 189: 751-764. DOI:

Chen, E., Choy, M.S., Petrényi, K., Kónya, Z., Erdödi, F., Dombrádi, V., Peti, W. & Page, R. (2016). Molecular insights into the fungus-specific serine/threonine protein phosphatase Z1 in Candida albicans. mBio, 7: article number e00872-16. DOI:

Chiu, T., Behari, A., Chartron, J.W., Putman, A. & Li, Y. (2021). Exploring the potential of engineering polygalacturonase-inhibiting protein as an ecological, friendly, and nontoxic pest control agent. Biotechnology and Bioengineering, online version before inclusion in an issue. DOI:

Chu, Z.J., Wang, Y.J., Ying, S.H., Wang, X.W. & Feng, M.G. (2016). Genome-wide host-pathogen interaction unveiled by transcriptomic response of Diamondback Moth to fungal infection. PLoS ONE, 11: article number e0152908. DOI:

Courty, P.-E., Doidy, J., Garcia, K., Wipf, D. & Zimmermann, S. D. (2016). The transportome of mycorrhizal systems. In: Molecular Mycorrhizal Symbiosis, (ed F. Martin), pp. 239-256. Hoboken, NJ, USA: John Wiley & Sons, Inc. DOI: VIEW on Amazon.

Cragg, S.M., Beckham, G.T., Bruce, N.C., Bugg, T.D.H., Distel, D.L., Dupree, P., Green Etxabe, A., Goodell, B.S., Jellison, J., McGeehan, J.E., McQueen-Mason, S.J., Schnorr, K., Walton, P.H., Watts, J.E.M. & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 29: 108-119. DOI:

Davin, L.B. & Lewis, N.G. (2005). Lignin primary structures and dirigent sites. Current Opinion in Biotechnology, 16: 407-415. DOI:

de Gonzalo, G., Colpa, D.I., Habib, M.H.M. & Fraaije, M.W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236: 110-119. DOI:

Desjardin, D.E., Oliveira, A.G. & Stevani, C.V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7: 170-182. DOI:

Dighton, J. & White J.F. (eds). (2017). The Fungal Community: Its Organization and Role in the Ecosystem, 4th Edition. 597 pp. Boca Raton, Florida: CRC Press. ISBN 10: 1498706657, ISBN 13: 9781498706650. VIEW on Amazon.

Dimarogona, M., Topakas, E. & Christakopoulos, P. (2012). Cellulose degradation by oxidative enzymes. Computational and Structural Biotechnology Journal, 2: article number e201209015. DOI:

Evans, J.P., Gervasio, D.F. & Pryor, B.M. (2021). A hybrid microbial-enzymatic fuel cell cathode overcomes enzyme inactivation limits in biological fuel cells. Catalysts, 11 (2): article number 242. DOI:

Fernandez, D., Russi, S., Vendrell, J., Monod, M. & Pallarès, I. (2013). A functional and structural study of the major metalloprotease secreted by the pathogenic fungus Aspergillus fumigatus. Acta Crystallographica, Section D Structural Biology, 69: 1946-1957. DOI:

Gadd, G.M. (ed.). (2006). Fungi in Biogeochemical Cycles (British Mycological Society Symposia). Cambridge, UK: Cambridge University Press. DOI: VIEW on Amazon.

Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J. & Mahajan, R. (2016). Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech, 6: 47 (13 pp.). DOI:

Guan, K.L. & Xiong, Y. (2011). Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 36: 108-116. DOI:

Gut, P. & Verdin, E. (2013). The nexus of chromatin regulation and intermediary metabolism. Nature, 502: 489-498. DOI:

Haitjema, C.H., Gilmore, S.P., Henske, J.K., Solomon, K.V., de Groot, R., Kuo, A., Mondo, S.J., Salamov, A.A., LaButti, K., Zhao, Z., Chiniquy, J., Barry, K., Brewer, H.M., Purvine, S.O., Wright, A.T., Hainaut, M., Boxma, B., van Alen, T., Hackstein, J.H.P., Henrissat, B., Baker, S.E., Grigoriev, I.V. & O’Malley, M.A. (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2: article number 17087. DOI:

Hartl, L., Zach, S. & Seidl-Seiboth, V. (2012). Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 93: 533-543. DOI:

Heaton, L.L.M., López, E., Maini, P.K., Fricker, M.D. & Jones, N.S. (2010). Growth-induced mass flows in fungal networks. Proceedings of the Royal Society, series B, Biological Sciences, 277: 3265-3274. DOI:

Herman, K.C., Wösten, H.A.B., Fricker, M.D. & Bleichrodt, R.-J. (2020). Growth induced translocation effectively directs an amino acid analogue to developing zones in Agaricus bisporus. Fungal Biology, 124: 1013-1023. DOI:

Humphreys, J.M. & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5: 224-229. DOI:

Jennings, D. H. (2008). The Physiology of Fungal Nutrition. Cambridge, UK: Cambridge University Press. ISBN-10: 0521038162, ISBN-13: 978-0521038164. DOI: VIEW on Amazon.

Kalisz, H.M. (1988). Microbial proteinases. Advances in Biochemical Engineering/Biotechnology, 36: 1-65. DOI:

Kalisz, H.M., Moore, D. & Wood, D.A. (1986). Protein utilization by basidiomycete fungi. Transactions of the British Mycological Society, 86: 519-525. DOI:

Kalisz, H.M., Wood, D.A. & Moore, D. (1987). Production, regulation and release of extracellular proteinase activity in basidiomycete fungi. Transactions of the British Mycological Society, 88: 221-227. DOI:

Kalisz, H.M., Wood, D.A. & Moore, D. (1989). Some characteristics of extracellular proteinases from Coprinus cinereus. Mycological Research, 92: 278-285. DOI:

Knežević, A., Milovanović, I., Stajić, M., Lončar, N., Brčeski, I., Vukojević, J. & Ćilerdžić, J. (2013). Lignin degradation by selected fungal species. Bioresource Technology, 138: 117-123. DOI:

Macheleidt, J., Mattern, D.J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V. & Brakhage, A.A. (2016). Regulation and role of fungal secondary metabolites. Annual Review of Genetics, 50: 371-392. DOI:

Mandujano-González, V., Villa-Tanaca, L., Anducho-Reyes, M.A. & Mercado-Flores, Y. (2016). Secreted fungal aspartic proteases: a review. Revista Iberoamericana de Micología, 33: 76-82. DOI:

Mérillon, J.M. & Ramawat, K.G. (eds) (2017). Fungal Metabolites. Switzerland: Springer International Publishing. Pp. 1001. ISBN-10: 3319250000, ISBN-13: 978-3319250007. VIEW on Amazon.

Moiseenko, K.V., Glazunova, O.A., Shakhova, N.V., Savinova, O.S., Vasina, D.V., Tyazhelova, T.V., Psurtseva, N.V. & Fedorova, T.V. (2019). Fungal adaptation to the advanced stages of wood decomposition: insights from the Steccherinum ochraceum. Microorganisms, 7: 527. DOI:

Montalvo, G., Téllez-Téllez, M., Díaz, R., Sánchez, C. & Díaz-Godínez, G. (2020). Isoenzymes and activity of laccases produced by Pleurotus ostreatus grown at different temperatures. Revista Mexicana de Ingeniería Química, 19: 345-354. DOI:

Monteiro de Souza, P., de Assis Bittencourt, M.L., Canielles Caprara, C., de Freitas, M., Coppini de Almeida, R.P., Silveira, D., Fonseca, Y.M., Ferreira, Filho, E.X., Pessoa Jr, A. & Oliveira Magalhães, P. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46: 337-346. DOI:

Moore, D. (1998). Fungal Morphogenesis. New York: Cambridge University Press. 469 pp. SEE chapter 3 Metabolism and biochemistry of hyphal systems. ISBN-10: 0521552958, ISBN-13: 978-0521552950. DOI:  VIEW on Amazon.

Moore, D. & Devadatham, M. S. (1979). Sugar transport in Coprinus cinereus. Biochimica et Biophysica Acta (Biomembranes), 550: 515-526. DOI:

Muszewska, A., Stepniewska-Dziubinska, M.M., Steczkiewicz, K., Pawlowska, J., Dziedzic, A. & Ginalski, K. (2017). Fungal lifestyle reflected in serine protease repertoire. Scientific Reports, 7: article number 9147. DOI:

Negri, R. (2015). Polyacetylenes from terrestrial plants and fungi: recent phytochemical and biological advances. Fitoterapia, 106: 92-109. DOI:

Nehls, U. & Dietz, S. (2014). Fungal aquaporins: cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, 98: 8835-8851. DOI:

Nirmal, N.P., Shankar, S. & Laxman, R. (2011). Fungal proteases: an overview. International Journal of Biotechnology & Biosciences, 1: 1-40.  URL:

Oliveira, A.G., Desjardin, D.E., Perry, B.A. & Stevani, C.V. (2012). Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochemical & Photobiological Sciences, 11: 848-852. DOI:

Patel, S.J. & Savanth, V.D. (2015). Review on fungal xylanases and their applications. International Journal of Advanced Research, 3: 311-315. URL:

Pathak, D. & Mallik, R. (2017). Lipid - motor interactions: soap opera or symphony? Current Opinion in Cell Biology, 44: 79-85. DOI:

Peralta, R.M., da Silva, B.P., Gomes Côrrea, R.C., Kato, C.G., Vicente Seixas, F.A. & Bracht, A. (2017). Enzymes from basidiomycetes - peculiar and efficient tools for biotechnology. In: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications, (ed G. Brahmachari), pp. 119-149. Amsterdam: Academic Press, an imprint of Elsevier. DOI:

Rai, A.K., Rai, A., Ramaiya, A.J., Jha, R. & Mallik, R. (2013). Molecular adaptations allow dynein to generate large collective forces inside cells. Cell, 152: 172-182. DOI:

Rana, V. & Rana, D. (2017). Role of microorganisms in lignocellulosic biodegradation. In: Renewable biofuels: bioconversion of lignocellulosic biomass by microbial community, (eds V. Rana & D. Rana). SpringerBriefs in Applied Sciences and Technology. Pp.19-67. Switzerland: Springer International Publishing AG. DOI: VIEW on Amazon.

Reignault, P., Valette-Collet, O. & Boccara, M. (2008). The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. European Journal of Plant Pathology, 120: 1-11. DOI:

Rodrigues, A.G. (2016). Secondary metabolism and antimicrobial metabolites of Aspergillus. In: New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications, (ed V.K. Gupta), pp. 81-93. Amsterdam: Elsevier B.V. DOI: VIEW on Amazon.

Roy, A., Ahuja, S. & Garg, S. (2021). Fungal secondary metabolites: biological activity and potential applications. In: Recent Trends in Mycological Research, (ed A.N. Yadav). Part of the Fungal Biology book series. Cham: Springer Nature Switzerland AG. ISBN: 9783030606589. Pp. 159-188. DOI:

Sakovich, V.V. (2020). Structural and functional peculiarities of aspartic proteases of basidiomycetes. Biopolymers & Cell, 36: 87-98. DOI:

Sánchez, C. (2017). Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2: 13-22. DOI:

Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22: 36-42. DOI:

Shafrin, F., Ferdous, A.S., Sarkar, S.K., Ahmed, R., Amin, A., Hossain, K., Sarker, M., Rencoret, J., Gutiérrez, A., del Rio, J.C., Sanan-Mishra, N. & Khan, H. (2017). Modification of monolignol biosynthetic pathway in jute: different gene, different consequence. Scientific Reports, 7: article number 39984. DOI:

Sharma, A., Jain, K.K., Jain, A., Kidwai, M. & Kuhad, R.C. (2018). Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Applied Microbiology and Biotechnology, 102: 10327-10343. DOI:

Sigoillot, J.C., Berrin, J.G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., Record, E., Uzan-Boukhris, E., Jouanin, L. & Lapierre, C. (2012). Fungal strategies for lignin degradation. Advances in Botanical Research, 61: 263-308. DOI:

Taj Aldeen, S.J. & Moore, D. (1982). The ftr cistron of Coprinus cinereus is the structural gene for a multifunctional transport molecule. Current Genetics, 5: 209-213. DOI: CLICK here to download full-text PDF.

Toesch, M., Schober, M. & Faber, K. (2014). Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Applied Microbiology and Biotechnology, 98: 1485-1496. DOI:

Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153: 895-905. DOI:

Verma, S., Dixit, R. & Pandey, K.C. (2016). Cysteine proteases: modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology, 7: article number 107. DOI:

Watling, R. & Harper, D.B. (1998). Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. Mycological Research, 102: 769-787. DOI:

Yaegashi, J., Oakley, B.R. & Wang, C.C.C. (2014). Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. Journal of Industrial Microbiology & Biotechnology, 41: 433-442. DOI:

Zhou, J., Kang, L., Liu, C., Niu, X., Wang, X., Liu, H., Zhang, W., Liu, Z., Latgé, J.-P. & Yuan, S. (2019). Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinerea. Applied and Environmental Microbiology, 85: article number e00532-19. DOI:

Zmitrovich, I.V., Belova, N.V., Psurtseva, N.V. & Wasser, S.P. (2019). The brown roll-rim mushroom, Paxillus involutus (Agaricomycetes), as a promising biomedical research resource. International Journal of Medicinal Mushrooms, 21: 1241-1247. DOI:

Updated August, 2021