13.21 Chapter 13 References and Further Reading

Aanen, D.K. & Eggleton, P. (2017). Symbiogenesis: beyond the endosymbiosis theory? Journal of Theoretical Biology, 434: 99-103. DOI: https://doi.org/10.1016/j.jtbi.2017.08.001.

Abdel-Azeem, A.M., Abo Nahas, H.H., Abdel-Azeem, M.A., Tariq, F.J. & Yadav, A.N. (2021). Biodiversity and ecological perspective of industrially important fungi: an introduction. In: Industrially Important Fungi for Sustainable Development (eds A.M. Abdel-Azeem, A.N. Yadav, N. Yadav & Z. Usmani). Part of the Fungal Biology book series. Cham, Switzerland: Springer Nature Switzerland AG. ISBN: 978303067560-8. Pp. 1-34. DOI: https://doi.org/10.1007/978-3-030-67561-5_1.

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C. & Sánchez, C. (2018). A novel biodegradation pathway of the endocrine-disruptor di(2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicology and Environmental Safety, 147: 494-499. DOI: https://doi.org/10.1016/j.ecoenv.2017.09.004.

Al Hosni, A.S., Pittman, J.K. & Robson, G.D. (2019). Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 97: 105-114. DOI: https://doi.org/10.1016/j.wasman.2019.07.042.

Alsterberg, C., Roger, F., Sundbäck, K., Juhanson, J., Hulth, S., Hallin, S. & Gamfeldt, L. (2017). Habitat diversity and ecosystem multifunctionality: the importance of direct and indirect effects. Science Advances, 3: article e1601475. DOI: https://doi.org/10.1126/sciadv.1601475.

Álvarez-Barragán, J., Domínguez-Malfavón, L., Vargas-Suárez, M., González-Hernández, R., Aguilar-Osorio, G. & Loza-Tavera, H. (2016). Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Applied and Environmental Microbiology, 82: 5225-5235. DOI: http://dx.doi.org/10.1128/AEM.01344-16.

Anderson, I.C. & Parkin, P.I. (2007). Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. Journal of Microbiological Methods, 68: 248-253. DOI: http://dx.doi.org/10.1016/j.mimet.2006.08.005.

Andrew, C., Heegaard, E., Høiland, K., Senn-Irlet, B., Kuyper, T.W., Krisai-Greilhuber, I., Kirk, P.M., Heilmann-Clausen, J., Gange, A.C., Egli, S., Bässler, C., Büntgen, U., Boddy, L. & Kauserud, H. (2018). Explaining European fungal fruiting phenology with climate variability. Ecology, 99: 1306-1315. DOI: https://doi.org/10.1002/ecy.2237.

Andrew, C., Büntgen, U., Egli, S., Senn-Irlet, B., Grytnes, J.-A., Heilmann-Clausen, J., Boddy, L., Bässler, C., Gange, A.C., Heegaard, E., Høiland, K., Kirk, P.M., Krisai-Greilhüber, I., Kuyper, T.W. & Kauserud, H. (2019). Open-source data reveal how collections-based fungal diversity is sensitive to global change. Applications in Plant Sciences, 7: article e1227 (online version of record before inclusion in an issue). DOI: https://doi.org/10.1002/aps3.1227.

Anke, H. & Weber, R.W.S. (2006). White-rots, chlorine and the environment – a tale of many twists. Mycologist, 20: 83-89. DOI: http://dx.doi.org/10.1016/j.mycol.2006.03.011. CLICK HERE to download the complete text.

Aragón, W., Reina-Pinto. J.J. & Serrano, M. (2017). The intimate talk between plants and microorganisms at the leaf surface. Journal of Experimental Botany, 68: 5339-5350. DOI: https://doi.org/10.1093/jxb/erx327.

Armaleo, D., Müller, O., Lutzoni, F., Andrésson, Ó.S., Blanc, G., and 28 others. (2019). The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 20: 605. DOI: https://doi.org/10.1186/s12864-019-5629-x.

Arnold, A.E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges and frontiers. Fungal Biology Reviews, 21: 51-66. DOI: http://dx.doi.org/10.1016/j.fbr.2007.05.003.

Aschenbrenner, I.A., Cernava, T., Berg, G.  & Grube, M. (2016). Understanding microbial multi-species symbioses. Frontiers in Microbiology, 7: 180. DOI: https://doi.org/10.3389/fmicb.2016.00180.

Atsatt, P.R. (1988). Are vascular plants ‘inside-out’ lichens? Ecology, 69: 17-23. DOI: https://doi.org/10.2307/1943156. CLICK HERE to download the complete text.

Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L. and 16 others. (2018). Characterisation and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 115: E4350-E4357. DOI: https://doi.org/10.1073/pnas.1718804115.

Averill, C., Turner, B.L. & Finzi, A.C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505: 543-545. DOI: https://doi.org/10.1038/nature12901.

Avila, R., Johanson, K. J. & Bergstrom, R. (1999). Model of the seasonal variations of fungi ingestion and 137Cs activity concentrations in roe deer. Journal of Environmental Radioactivity, 46: 99-112. DOI: https://doi.org/10.1016/S0265-931X(98)00108-8.

Balasundaram, S.V., Hess, J., Durling, M.B., Moody, S.C., Thorbek, L., Progida, C., LaButti, K., Aerts, A., Barry, K., Grigoriev, I.V., Boddy, L., Högberg, N., Kauserud, H., Eastwood, D.C. & Skrede, I. (2018). The fungus that came in from the cold: dry rot’s pre-adapted ability to invade buildings. The ISME Journal, 12: 791-801. DOI: https://doi.org/10.1038/s41396-017-0006-8.

Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B, 42: 441-451. DOI: https://doi.org/10.1080/03601230701316465.

Barh, A., Kumari, B., Sharma, S., Annepu, S.K., Kumar, A., Kamal, S. & Sharma, V.P. (2019). Mushroom mycoremediation: kinetics and mechanism. Chapter 1 (pp. 1-22) in Smart Bioremediation Technologies: Microbial Enzymes, (ed P. Bhatt). Pp. 408. Published by Academic Press an imprint of Elsevier Inc. ISBN: 9780128183076. DOI: https://doi.org/10.1016/B978-0-12-818307-6.00001-9.

Barratt, S.R., Ennos, A.R., Greenhalgh, M., Robson, G.D. & Handley, P.S. (2003). Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. Journal of Applied Microbiology, 95: 78-85. DOI: https://doi.org/10.1046/j.1365-2672.2003.01961.x.

Barrow, J., Lucero, M., Reyes-Vera, I. & and Havstad, K. (2007). Endosymbiotic fungi structurally integrated with leaves reveals a lichenous condition of C4 grasses. In Vitro Cellular & Developmental Biology - Plant, 43: 65-70. DOI: https://doi.org/10.1007/s11627-006-9007-4.

Beckett, R., Kranner, I., & Minibayeva, F. (2008). Stress physiology and the symbiosis. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 134-151. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI: https://doi.org/10.1017/CBO9780511790478.009.

Bindschedler, S., Vu Bouquet, T.Q.T., Job, D., Joseph, E. & Junier, P. (2017). Fungal biorecovery of gold from e-waste. Advances in Applied Microbiology, 99: 53-81. DOI: https://doi.org/10.1016/bs.aambs.2017.02.002.

Bitew, T.D. & Mandefro, S.A. (2018). Substrate optimization for cultivation of Pleurotus ostreatus on lignocellulosic wastes (coffee, sawdust, and sugarcane bagasse) in Mizan - Tepi University, Tepi Campus, Tepi Town. Journal of Applied Biology and Biotechnology, 6 (04): 14-20. DOI: https://doi.org/10.7324/JABB.2018.60403.

Bonfante, P. (2019). Symbiosis: algae and fungi move from the past to the future. eLife, 8: article number e49448. DOI: https://doi.org/10.7554/eLife.49448.

Bonnardeaux, Y., Brundrett, M., Batty, A., Dixon, K., Koch, J. & Sivasithamparam, K. (2007). Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasion. Mycological Research, 111: 51-61. DOI: https://doi.org/10.1016/j.mycres.2006.11.006.

Borovička, J., Řanda, Z., Jelínek, E., Kotrba, P. & Dunn, C.E. (2007). Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research, 111: 1339-1344. DOI: https://doi.org/10.1016/j.mycres.2007.08.015.

Bousquet, F., Botta, A., Alinovi, L., Barreteau, O., Bossio, D. & 16 others. (2016). Resilience and development: mobilizing for transformation. Ecology and Society, 21: article 40. DOI: https://doi.org/10.5751/ES-08754-210340.

Brodo, I.M., Sharnoff, S.D. & Sharnoff, S. (2001). Lichens of North America. New Haven, CT: Yale University Press. Pp. 828. ISBN: 9780300082494. VIEW on Amazon.

Brundrett, M.C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320: 37-77.  DOI: https://doi.org/10.1007/s11104-008-9877-9.

Brundrett, M.C., Murase, G. & Kendrick, B. (1990). Comparative anatomy of roots and mycorrhizae of common Ontario trees. Canadian Journal of Botany, 68: 551-578. DOI: https://doi.org/10.1139/b90-076.

Büdel, B. & Scheidegger, C. (2008). Thallus morphology and anatomy. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 40-68. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747.  DOI: https://doi.org/10.1017/CBO9780511790478.005. VIEW on Amazon.

Buller, A.H.R. (1931). Researches on Fungi, vol. 4. London: Longmans, Green and Co. ASIN: B0008BT4R6. VIEW on Amazon.

Camazine, S. (1983). Mushroom chemical defense: food aversion learning induced by hallucinogenic toxin, Muscimol. Journal of Chemical Ecology, 9: 1473-1481. DOI: https://doi.org/10.1007/BF00990749.

Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M.C. (2021). Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters, 24: 208-218. DOI: https://doi.org/10.1111/ele.13632.

Cernava, T., Erlacher, A., Aschenbrenner, I.A., Krug, L., Lassek, C., Riedel, K., Grube, M. & Berg, G. (2017). Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome, 5: 82. DOI: https://doi.org/10.1186/s40168-017-0303-5.

Cernava, T., Müller, H., Aschenbrenner, I.A., Grube, M. & Berg, G. (2015). Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Frontiers in Microbiology, 6: 620. DOI: https://doi.org/10.3389/fmicb.2015.00620.

Chalot, M., Javelle, A., Blaudez, D., Lambilliote, R., Cooke, R., Sentenac, H., Wipf, D. & Botton, B. (2002). An update on nutrient transport processes in ectomycorrhizas. Plant and Soil, 244: 165-175. DOI: https://doi.org/10.1023/A:1020240709543.

Chandra, P. & Enespa (2019). Mycoremediation of environmental pollutants from contaminated soil. In: Mycorrhizosphere and Pedogenesis, (eds A. Varma & D. Choudhary), pp. 239-274. Singapore: Springer (an imprint of Springer Nature Switzerland AG). ISBN 9789811364792. DOI: https://doi.org/10.1007/978-981-13-6480-8_15.

Chiarella, D. & Hernández-Molina, F.J. (2021). Go with the flow: the role of gateway and straits on plastic distribution. Geology Today, 37: 66-69. DOI: https://doi.org/10.1111/gto.12345.

Chiu, S.W., Ching, M.L., Fong, K.L. & Moore, D. (1998). Spent Oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol.  Mycological Research, 102: 1553-1562. DOI: https://doi.org/10.1017/S0953756298007588. CLICK HERE to download the full text.

Collier, F.A. & Bidartondo, M.I. (2009).Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. Journal of Ecology, 97: 950-963. DOI: https://doi.org/10.1111/j.1365-2745.2009.01544.x.

Cooke, M.C. (1862). A plain and easy account of the British fungi, with descriptions of the esculent and poisonous species, details of the principles of scientific classification, and a tabular arrangement of orders and genera. Pp. 166. London: Robert Hardwicke. View this vintage book (free) at this URL: http://www.archive.org/details/aplainandeasyacc00cookiala/.

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387: 253. DOI: https://doi.org/10.1038/387253a0.

Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S. & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28: 1-16. DOI: https://doi.org/10.1016/j.ecoser.2017.09.008.

Currie, A.F., Wearn, J., Hodgson, S., Wendt, H., Broughton, S. & Jin, L. (2014). Foliar fungal endophytes in herbaceous plants: a marriage of convenience? In: Advances in Endophytic Research, (eds V. Verma & A. Gange), pp. 61-81. New Delhi: Springer International Publishing. ISBN: 978-81-322-1574-5. DOI: https://doi.org/10.1007/978-81-322-1575-2_3.

Crowther, T.W., Boddy, L. & Jones, T.H. (2012). Functional and ecological consequences of saprotrophic fungus-grazer interactions. The ISME Journal, 6: 1992-2001. DOI: https://doi.org/10.1038/ismej.2012.53.

Czederpiltz, D.L.L., Stanosz, G.R. & Burdsall, H.H. Jr. (1999). Forest management and the diversity of wood-inhabiting fungi. McIlvainia, 14: 34-45. Forest Products Laboratory. URL: https://www.fpl.fs.fed.us/documnts/pdf1999/czede99a.pdf.

Daily, G.C. (ed) (1997). Nature’s Services: Societal Dependence on Natural Ecosystems. Washington, DC: Island Press. 412 pp. ISBN-10: 1559634766, ISBN-13: 978-1559634762. VIEW on Amazon.

Delaux, P.-M., Radhakrishnan, G.V., Jayaraman, D., Cheema, J., Malbreil, M. and 16 others (2015). Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 112: 13390-13395. DOI: https://doi.org/10.1073/pnas.1515426112.

Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M. and 14 others (2018). Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 42: 335-352. DOI: https://doi.org/10.1093/femsre/fuy008.

Dickson, U.J., Coffey, M., Mortimer, R.J.G., Di Bonito, M. & Ray, N. (2019). Mycoremediation of petroleum contaminated soils: progress, prospects and perspectives. Environmental Science: Processes & Impacts, 21: 1446-1458. DOI: https://doi.org/10.1039/C9EM00101H.

Diez, J.M., James, T.Y., McMunn, M. & Ibáñez, I. (2013). Predicting species-specific responses of fungi to climatic variation using historical records. Global Change Biology, 19: 3145-3154. DOI: https://doi.org/10.1111/gcb.12278.

Dövényi-Nagy, T., Rácz, C., Molnár, K., Bakó, K., Szláma, Z., Jóźwiak, Á., Farkas, Z., Pócsi, I. & Dobos, A.C. (2020). Pre-harvest modelling and mitigation of aflatoxins in maize in a changing climatic environment - a review. Toxins, 12: article no. 768. DOI: https://doi.org/10.3390/toxins12120768.

Downie, J.A. (2014). Legume nodulation. Current Biology, 24: R184-R190. DOI: https://doi.org/10.1016/j.cub.2014.01.028.

Dranginis, A.M., Rauceo, J.M., Coronado, J.E. & Lipke, P.N. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiology and Molecular Biology Reviews, 71: 282-294. DOI: https://doi.org/10.1128/MMBR.00037-06.

Du, Z.-Y., Zienkiewicz, K., Vande Pol, N., Ostrom, N.E., Benning, C. & Bonito, G.M. (2019). Algal-fungal symbiosis leads to photosynthetic mycelium. eLife, 8: article number e47815. DOI: https://doi.org/10.7554/eLife.47815.001.

Dugan, F.M. (2011). Conspectus of World Ethnomycology: Fungi in Ceremonies, Crafts, Diets, Medicines, and Myths. 151 pp. Publisher: Clearway Logistics Phase 1a for The American Phytopathological Society. ISBN-10: 089054395X, ISBN-13: 978-0890543955. VIEW on Amazon.

Edwards, D., Kenrick, P. & Dolan, L. (2018). History and contemporary significance of the Rhynie cherts - our earliest preserved terrestrial ecosystem. Philosophical Transactions of the Royal Society of London, series B, 373: article number 20160489. DOI: https://doi.org/10.1098/rstb.2016.0489.

Elix, J., & Stocker-Wörgötter, E. (2008). Biochemistry and secondary metabolites. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 104-133. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI: https://doi.org/110.1017/CBO9780511790478.008.

Endo, A. (1992). The discovery and development of HMG-CoA reductase inhibitors. Journal of Lipid Research, 33: 1569-1582. URL: http://www.jlr.org/content/33/11/1569.short.

Fellbaum, C.R., Gachomo, E.W., Beesetty, Y., Choudhari, S., Strahan, G.D., Pfeffer, P.E., Kiers, E.T. & Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109: 2666-2671. DOI: https://doi.org/10.1073/pnas.1118650109.

Fellbaum, C.R., Mensah, J.A., Cloos, A.J., Strahan, G.E., Pfeffer, P.E., Kiers, E.T. & Bucking, H. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203: 646-656. DOI: https://doi.org/10.1111/nph.12827.

Fernandez, C.W. & Kennedy, P.G. (2016). Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytologist, 209: 1382-1394. DOI: https://doi.org/10.1111/nph.13648.

Ferrer-Parra, L., López-Nicolás, D.I., Martínez-Castillo, R., Montiel-Cina, J.P., Morales-Hernández, A.R., Ocaña-Romo, E., González Márquez, A., Portillo-Ojeda, M., Sánchez-Sánchez, D.F. & Sánchez, C. (2018). Partial characterization of esterases from Fusarium culmorum grown in media supplemented with di (2-ethyl hexyl phthalate) in solid-state and submerged fermentation. Mexican Journal of Biotechnology. 3: 82-94. DOI: https://doi.org/10.29267/mxjb.2018.3.1.83.

Ferrol, N., Barea, J.M. & Azcón-Aguilar, C. (2002). Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant and Soil, 244: 231–237. DOI: https://doi.org/10.1023/A:1020266518377.

Feuerer, T. & Hawksworth, D.L. (2007). Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodiversity and Conservation, 16: 85-98. DOI: https://doi.org/10.1007/s10531-006-9142-6.

Field, K.J., Pressel, S., Duckett, J.G., Rimington, W.R. & Bidartondo, M.I. (2015). Symbiotic options for the conquest of land. Trends in Ecology & Evolution, 30: 477-486. DOI: https://doi.org/10.1016/j.tree.2015.05.007.

Floren, A., Krüger, D., Müller, T., Dittrich, M., Rudloff, R., Hoppe, B. & Linsenmair, K.E. (2015). Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment. PLoS ONE, 10: article number e0143566. DOI: https://doi.org/10.1371/journal.pone.0143566.

Fomina, M., Hong, J.W. & Gadd, G.M. (2019). Effect of depleted uranium on a soil microcosm fungal community and influence of a plant-ectomycorrhizal association. Fungal Biology, in press. DOI: https://doi.org/10.1016/j.funbio.2019.08.001.

Frankland, J.C. (1998). Fungal succession - unravelling the unpredictable. Mycological Research, 102: 1-15. DOI: https://doi.org/10.1017/S0953756297005364.

Gadgil, R.L. & Gadgil, P.D. (1971). Mycorrhiza and litter decomposition. Nature, 233: 133. DOI: https://doi.org/10.1038/233133a0.

Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., Nadal, A. & Romano D. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30: 13-27. DOI: https://doi.org/10.1186/s12302-018-0139-z.

Gange, A.C., Allen, L.P., Nussbaumer, A., Gange, E.G., Andrew, C., Egli, S., Senn-Irlet, B. & Boddy, L. (2019a). Multiscale patterns of rarity in fungi, inferred from fruiting records. Global Ecology and Biogeography, online Version of Record before inclusion in an issue. DOI: https://doi.org/10.1111/geb.12918.

Gange, A.C., Gange, E.G., Sparks, T.H. & Boddy, L. (2007). Rapid and recent changes in fungal fruiting patterns. Science, 316: 71. DOI: https://doi.org/10.1126/science.1137489.

Gange, A.C., Koricheva, J., Currie, A.F., Jaber, L.R. & Vidal, S. (2019b). Meta-analysis of the role of entomopathogenic and unspecialised fungal endophytes as plant bodyguards. New Phytologist, accepted article online ahead of publication. DOI: https://doi.org/10.1111/nph.15859.

Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E., Hutmacher, R.B., Dahlberg, J.A., Coleman-Derr, D., Lemaux, P.G. & Taylor, J.W. (2018). Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal, 2018. DOI: https://doi.org/10.1038/s41396-018-0264-0.

Gao, D. & Wen, Z.-D. (2015). Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Science of the Total Environment, 541: 986-1001. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.148.

Gardner, S.M., Ramsden, S.J. & Hails, R.S. (eds) (2019). Agricultural Resilience: Perspectives from Ecology and Economics. 428 pp. Cambridge, UK: Cambridge University Press. ISBN: 9781107665873. View on Amazon.

Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, online ahead of publication. DOI: https://doi.org/10.1038/s41579-020-0402-3.

Geyer, R., Jambeck, J.R. & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3: article number e1700782. DOI: https://doi.org/10.1126/sciadv.1700782.

Ghosh, R., Choi, B., Kwon, Y.S., Bashir, T., Bae, D.-W. & Bae, H. (2019). Proteomic changes in the sound vibration-treated Arabidopsis thaliana facilitates defense response during Botrytis cinerea infection. Plant Pathology Journal, 35: 609-622. DOI: https://doi.org/10.5423/PPJ.OA.11.2018.0248.

Gilbert, L. & Johnson, D. (2017). Plant-plant communication through Common Mycorrhizal Networks. Advances in Botanical Research, 82: 83-97. DOI: https://doi.org/10.1016/bs.abr.2016.09.001.

González-Márquez, A., Loera-Corral, O., Santacruz-Juárez, J, Tlécuitl-Beristain, S., García-Dávila, J., Viniegra-González, G. & Sánchez, C. (2019a). Biodegradation patterns of the endocrine disrupting pollutant di (2-ethyl hexyl) phthalate by Fusarium culmorum. Ecotoxicology and Environmental Safety, 170: 293-299. DOI: https://doi.org/10.1016/j.ecoenv.2018.11.140.

González-Márquez, A., Loera-Corral, O., Viniegra-González, G. & Sánchez, C. (2019b). Production of cutinolytic esterase by Fusarium culmorum grown at different apple cutin concentrations in submerged fermentation/Producción de esterasa cutinolítica por Fusarium culmorum crecido en diferentes concentraciones de cutina de manzana en fermentación sumergida. Mexican Journal of Biotechnology, 4: 50-64. DOI: https://doi.org/10.29267/mxjb.2019.4.4.50.

González-Márquez, A., Loera-Corral, O., Viniegra-González, G. & Sánchez, C. (2020). Induction of esterase activity during the degradation of high concentrations of the contaminant di(2-ethylhexyl) phthalate by Fusarium culmorum under liquid fermentation conditions. 3 Biotech, 10: article number: 488. DOI: https://doi.org/10.1007/s13205-020-02476-y.

Grewe, F., Huang, J.-P., Leavitt, S.D. & Lumbsch, H.T. (2017). Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA. Scientific Reports, 7: article number 9884. DOI: https://doi.org/10.1038/s41598-017-09906-7.

Hao, T., Guillera-Arroita, G., May, T.W., Lahoz-Monfort, J.J. & Elith, J. (2020). Using species distribution models for fungi. Fungal Biology Reviews, 34: 74-88. DOI: https://doi.org/10.1016/j.fbr.2020.01.002.

Harley, J.L. (1991). The state of the art. In: Methods in Microbiology, vol. 23. Techniques for the Study of Mycorrhiza, (J.R. Norris, D.J. Read & A.K. Varma, eds). Pp. 1-23. London: Academic Press Ltd. ISBN: 9780125215237. DOI: https://doi.org/10.1016/S0580-9517(08)70171-5.

Hartnett, D.C. & Wilson, G.W.T. (2002). The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil, 244: 319-331. DOI: https://doi.org/10.1023/A:1020287726382.

Hauser, R. & Calafat, A.M. (2005). Phthalates and human health. Occupational and Environmental Medicine, 62: 806-818. DOI: http://dx.doi.org/10.1136/oem.2004.017590.

Hawksworth, D.L. & Grube, M. (2020). Lichens redefined as complex ecosystems. New Phytologist, online version before inclusion in an issue. DOI: https://doi.org/10.1111/NPH.16630.

Heijden, M.G.A., Martin, F.M., Selosse, M.-A. & Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205: 1406-1423. DOI: https://doi.org/10.1111/nph.13288.

Heilmann-Clausen, J., Adamčík, S., Bässler, C., Halme, P., Krisai-Greilhuber, I. & Holec, J. (2017). State of the art and future directions for mycological research in old-growth forests. Fungal Ecology, 27: 141-144. DOI: https://doi.org/10.1016/j.funeco.2016.12.005.

Higginbotham, S.J., Arnold, A.E., Ibañez, A., Spadafora, C., Coley, P.D. & Kursar, T.A. (2013). Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE, 8: article number e73192. DOI: https://doi.org/10.1371/journal.pone.0073192.

Hodkinson, T.R., Doohan, F.M., Saunders, M.J. & Murphy, B.R. (eds) (2019). Endophytes for a Growing World. 444 pp. Cambridge, UK: Cambridge University Press. ISBN: 9781108471763. View on Amazon.

Hongsanan, S., Sánchez-Ramírez, S., Crous, P.W., Ariyawansa, H.A., Zhao, R.L. & Hyde, K.D. (2016). The evolution of fungal epiphytes. Mycosphere, 7: 1690-1712. DOI: https://doi.org/10.5943/mycosphere/7/11/6.

Hou, L., McMahan, C.D., McNeish, R.E., Munno, K., Rochman, C.M. & Hoellein, T.J. (2021). A fish tale: a century of museum specimens reveal increasing microplastic concentrations in freshwater fish. Ecological Applications, in press, article number e02320. DOI: https://doi.org/10.1002/EAP.2320.

Huckfeldt, T. & Schmidt, O. (2006). Identification key for European strand-forming house-rot fungi. Mycologist, 20: 42-56. DOI: https://doi.org/10.1016/j.mycol.2006.03.012.

Hudson, H.J. (1986). Fungal Biology. London: Edward Arnold. Pp. 304. ISBN-10: 071312895X, ISBN-13: 978-0713128956. VIEW on Amazon.

Ivanov, S., Fedorova, E.E., Limpens, E., De Mita, S., Genre, A., Bonfante, P. & Bisseling, T. (2012). Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proceedings of the National Academy of Sciences of the United States of America, 109: 8316-8321. DOI: https://doi.org/10.1073/pnas.1200407109.

Jackson, R.M. & Mason, P.A. (1984) Mycorrhiza. The Institute of Biology’s Studies in Biology series. London: Edward Arnold Ltd. 60 pp. ISBN 0-7131-2876-3. VIEW on Amazon.

Jenkins, S., Quer, A.M., Fonseca, C. & Varrone, C. (2019). Microbial degradation of plastics: New plastic degraders, mixed cultures and engineering strategies. Chapter 12, pp. 213-238, in: Soil Microenvironment for Bioremediation and Polymer Production, (eds N. Jamil, P. Kumar & R. Batool). DOI: https://doi.org/10.1002/9781119592129.ch12.

Jenna, P., Nerea, A., Atte, K., Huhtinen, S., Kotiranta, H., Læssøe, T. & Halme, P. (2021). Wood-inhabiting fungal responses to forest naturalness vary among morpho-groups. Scientific Reports, 11: article 14585. DOI: https://doi.org/10.1038/s41598-021-93900-7.

Johnson, N.C., Gehring, C. & Jansa, J. (2017). Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage. Amsterdam: Elsevier, Inc. 526 pp. ISBN: 9780128043127. DOI: https://doi.org/10.1016/B978-0-12-804312-7.01001-9. VIEW on Amazon.

Johnston, P.R., Sutherland, P.W. & Joshee, S. (2006). Visualising endophytic fungi within leaves by detection of (1-3)-β-D-glucans in fungal cell walls. Mycologist, 20: 159-162. DOI: https://doi.org/10.1016/j.mycol.2006.10.003.

Johnston, S.R., Hiscox, J., Savoury, M., Boddy, L. & Weightman, A.J. (2019). Highly competitive fungi manipulate bacterial communities in decomposing beech wood (Fagus sylvativa). FEMS Microbiology Ecology, 95: article fiy225. DOI: https://doi.org/10.1093/femsec/fiy225.

Jorgensen, R. (1993). The origin of land plants: a union of alga and fungus advanced by flavonoids? Biosystems, 31: 193-207. DOI: https://doi.org/10.1016/0303-2647(93)90049-I.

Juutilainen, K., Mönkkönen, M., Kotiranta, H. & Halme, P. (2014). The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. Forest Ecology and Management, 313: 283-291. DOI: https://doi.org/10.1016/j.foreco.2013.11.019.

Karavani, A., De Cáceres, M., de Aragón, J.M., Bonet, J.A. & de-Miguel, S. (2018). Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change. Agricultural and Forest Meteorology, 248, 432-440. DOI: https://doi.org/10.1016/j.agrformet.2017.10.024.

Karunanithi, R., Szogi, A.A., Bolan, N., Naidu, R., Loganathan, P., Hunt, P.G., Vanotti, M.B., Saint, C.P., Ok, Y.S., Krishnamoorthy, S. & Sparks, D.L. (2015). Phosphorus recovery and reuse from waste streams. Advances in Agronomy, 131: 173-250. DOI: https://doi.org/10.1016/bs.agron.2014.12.005.

Kemona, A. & Piotrowska, M. (2020). Polyurethane recycling and disposal: methods and prospects. Polymers, 12: article 1752. DOI: https://doi.org/10.3390/polym12081752.

Keppler, F., Harper, D.B., Röckmann, T., Moore, R.M. & Hamilton, J.T.G. (2005). New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmospheric Chemistry and Physics, 5: 2403–2411. DOI: https://doi.org/10.5194/acp-5-2403-2005.

Khan, S., Nadir, S., Shah, Z.U., Shah, A.A., Karunarathna, S.C., Xu, J., Khan, A., Munir, S. & Hasan, F. (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 225: 469-480. https://doi.org/10.1016/j.envpol.2017.03.012.

Komura, D.L., Moncalvo, J.  Dambros, C.S., Bento, L.S., Neves, M.A. & Zartman, C.E. (2017). How do seasonality, substrate, and management history influence macrofungal fruiting assemblages in a central Amazonian Forest? Biotropica, 49: 643-652. DOI: https://doi.org/10.1111/btp.12438.

Konuma, R., Umezawa, K., Mizukoshi, A., Kawarada, K. & Yoshida, M. (2015). Analysis of microbial volatile organic compounds produced by wood-decay fungi. Biotechnology Letters, 37: 1845-1852. DOI: https://doi.org/10.1007/s10529-015-1870-9.

Koutrotsios, G., Tagkouli, D., Bekiaris, G., Kaliora, A., Tsiaka, T., Tsiantas, K., Chatzipavlidis, I., Zoumpoulakis, P., Kalogeropoulos, N. & Zervakis, G.I. (2021). Enhancing the nutritional and functional properties of Pleurotus citrinopileatus mushrooms through the exploitation of winery and olive mill wastes. Food Chemistry, article 131022, preprint online ahead of publication. DOI: https://doi.org/10.1016/j.foodchem.2021.131022.

Krakowska, A., Reczyński, W., Krakowski, T., Szewczyk, K., Opoka, W. & Muszyńska, B. (2021). A New biotechnology method of bioelements accumulation monitoring in in vitro culture of Agaricus bisporus. Molecules 2021, 26 (17): article 5165. DOI: https://doi.org/10.3390/molecules26175165.

Krings, M., Harper, C.J. & Taylor, E.L. (2018). Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philosophical Transactions of the Royal Society of London, series B, 373: article number 20160500. DOI: https://doi.org/10.1098/rstb.2016.0500.

Kumar, P., Mahato, D.K., Kamle, M., Mohanta, T.K. & Kang, S.G. (2016). Aflatoxins: a global concern for food safety, human health and their management. Frontiers in Microbiology, 7: article number 2170. DOI: https://doi.org/10.3389/fmicb.2016.02170.

Kurucz, V., Kiss, B., Szigeti, Z.M., Nagy, G., Orosz, E., Hargitai, Z., Harangi, S., Wiebenga, A., de Vries, R.P., Pócsi, I. & Emri, T. (2018). Physiological background of the remarkably high Cd2+ tolerance of the Aspergillus fumigatus Af293 strain. Journal of Basic Microbiology, 2018; 1–11. DOI: https://doi.org/10.1002/jobm.201800200.

Lacava, P.T. & Azevedo, J.L. (2014). Biological control of insect-pest and diseases by endophytes. In: Advances in Endophytic Research, (eds V. Verma & A. Gange), pp. 231-256. New Delhi: Springer International Publishing. ISBN: 978-81-322-1574-5. DOI: https://doi.org/10.1007/978-81-322-1575-2_13.

Lange, L., Bech, L., Busk, P.K., Grell, M.N., Huang, Y., Lange, M., Linde, T., Pilgaard, B., Roth, D. & Tong, X. (2012). The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus, 3: 87-92. DOI: https://doi.org/10.5598/imafungus.2012.03.01.09.

Lepp, N.W., Harrison, S.C.S. & Morrell, B.G. (1987). A role for Amanita muscaria L. in the circulation of cadmium and vanadium in a non-polluted woodland. Environmental Geochemistry and Health, 9: 61-64. DOI: https://doi.org/10.1007/BF02057276.

Lindahl, B.D. & Kuske, C.R. (2013). Metagenomics for study of fungal ecology. In: The Ecological Genomics of Fungi, (ed F. Martin), pp. 279-303. Hoboken, NJ: John Wiley & Sons, Inc. ISBN: 9781119946106. DOI: https://doi.org/10.1002/9781118735893.ch13.

Liu, B., Liu, J., Ju, M., Lic, X. & Wang, P. (2017). Bacteria-white-rot fungi joint remediation of petroleum-contaminated soil based on sustained-release of laccase. RSC Advances, 7: 39075-39081. DOI: https://doi.org/10.1039/C7RA06962F.

Lozano, Y.M., Aguilar-Trigueros, C.A., Roy, J. & Rillig, M.C. (2021). Drought induces shifts in soil fungal communities that can be linked to root traits across twenty-four plant species. New Phytologist, viewed online ahead of publication. DOI: https://doi.org/10.1111/nph.17707.

Lucero, M., Barrow, J.R., Osuna, P. & Reyes, I. (2008). A cryptic microbial community persists within micropropagated Bouteloua eriopoda (Torr.) Torr. cultures. Plant Science, 174: 570-575. DOI: https://doi.org/10.1016/j.plantsci.2008.02.012.

Lutzoni, F., Nowak, M., Alfaro, M., Reeb, V., Miadlikowska, J. and 9 others. (2018). Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications, 9: 5451. DOI: https://doi.org/10.1038/s41467-018-07849-9.

Lutzoni, F., Pagel, M. & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411: 937-940. DOI: https://doi.org/10.1038/35082053.

Martino, E., Morin, E., Grelet, G.A., Kuo, A., Kohler, A., and 23 others. (2018). Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 217: 1213-1229. DOI: https://doi.org/10.1111/nph.14974.

Marxsen, J. (ed) (2020). Climate Change and Microbial Ecology: Current Research and Future Trends (Second Edition). Norfolk, UK: Caister Academic Press. 548 pp. ISBN: 9781913652579. DOI: https://doi.org/10.21775/9781913652579.

Medina-Flores, H., González-Márquez, A. & Sánchez, C. (2020). Effect of surfactant Tween 80 on growth and esterase production of Fusarium culmorum in liquid fermentation/Efecto del surfactante Tween 80 en el crecimiento y la producción de esterasa de Fusarium culmorum en fermentación líquida. Mexican Journal of Biotechnology, 5: 64-79. DOI: https://doi.org/10.29267/mxjb.2020.5.4.64.

Meijer, L.J.J., van Emmerik, T., van der Ent, R., Schmidt, C. & Lebreton, L. (2021). More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, 7: article number eaaz5803. DOI: https://doi.org/10.1126/sciadv.aaz5803.

Meiser, A., Otte, J., Schmitt, I. & Grande, F.D. (2017). Sequencing genomes from mixed DNA samples - evaluating the metagenome skimming approach in lichenized fungi. Scientific Reports, 7: article number 14881. DOI: https://doi.org/10.1038/s41598-017-14576-6.

Meng, L., Zhang, A., Wang, F., Han, X., Wang, D. & Li, S. (2015). Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Frontiers in Plant Science, 6: article 339. DOI: https://doi.org/10.3389/fpls.2015.00339.

Menta, C. (2012). Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In: Biodiversity Conservation and Utilization in a Diverse World, (ed G.A. Lameed). Published in London by InTech, as an open access text under Creative Commons BY 3.0 license, ISBN 978-953-51-0719-4. DOI: https://doi.org/10.5772/51091.

Michelot, D. & Melendez-Howell, L.M. (2003). Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycological Research, 107: 131-146. DOI: https://doi.org/10.1017/S0953756203007305.

Misztal, P.K., Lymperopoulou, D.S., Adams, R.I., Scott, R.A., Lindow, S.E., Bruns, T., Taylor, J.W., Uehling, J., Bonito, G., Vilgalys, R. & Goldstein, A.H. (2018). Emission factors of microbial volatile organic compounds from environmental bacteria and fungi. Environmental Science & Technology, in press. DOI: https://doi.org/10.1021/acs.est.8b00806.

Mitchell, D.T. & Gibson, B.R. (2006). Ericoid mycorrhizal association: ability to adapt to a broad range of habitats. Mycologist, 20: 2-9. DOI: https://doi.org/10.1016/j.mycol.2005.11.015.

Mitchell, J.I. & Zuccaro, A. (2006). Sequences, the environment and fungi. Mycologist, 20: 62-74. DOI: https://doi.org/10.1016/j.mycol.2005.11.004.

Moore, D., Gange, A.C., Gange, E.G. & Boddy, L. (2008). Fruit bodies: their production and development in relation to environment. In: Ecology of Saprotrophic Basidiomycetes, (Boddy, L., Frankland, J.C. & van West, P. eds), pp. 79-103. London: Academic Press. ISBN-10: 0123741858, ISBN-13: 978-0123741851. CLICK HERE to download the full text. VIEW on Amazon.

Moretti, A., Logrieco, A.F. & Susca, A. (2017). Mycotoxins: an underhand food problem. In: Mycotoxigenic Fungi, Methods in Molecular Biology, vol 1542, (eds A. Moretti & A. Susca) pp. 3-12. New York, NY: Humana Press. DOI: https://doi.org/10.1007/978-1-4939-6707-0_1. VIEW on Amazon.

Nakamori, T. & Suzuki, A. (2007). Defensive role of cystidia against Collembola in the basidiomycetes Russula bella and Strobilurus ohshimae. Mycological Research, 111: 1345-1351. DOI: https://doi.org/10.1016/j.mycres.2007.08.013.

Naranjo-Briceño, L., Pernía, B., Perdomo, T., González, M., Inojosa, Y., De Sisto, A., Urbina, H. & León, V. (2019). Potential role of extremophilic hydrocarbonoclastic fungi for extra-heavy crude oil bioconversion and the sustainable development of the petroleum industry. Pp. 559-586, in: Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, (eds S. Tiquia-Arashiro & M. Grube). Cham, Switzerland: Springer Nature. ISBN: 9783030190293. DOI: https://doi.org/10.1007/978-3-030-19030-9_28.

Nash, T.H. (2008a). Lichen biology, 2nd edition. Cambridge, UK: Cambridge University Press. Pp. 496. ISBN: 9780511790478.  DOI: https://doi.org/10.1017/CBO9780511790478.

Nash, T.H. (2008b). Lichen sensitivity to air pollution. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 299-314. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI: https://doi.org/10.1017/CBO9780511790478.016.

Nash, T.H. (2008c). Nutrients, elemental accumulation, and mineral cycling. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 234-251. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI: https://doi.org/10.1017/CBO9780511790478.013.

Navarro-Ródenas, A., Pérez-Gilabert, M., Torrente, P. & Morte, A. (2012). The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza, 22: 565-575. DOI: https://doi.org/10.1007/s00572-012-0434-2.

Nehls, U., Göhringer, F., Wittulsky, S. & Dietz, S. (2010). Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biology, 12: 292-301. DOI: https://doi.org/10.1111/j.1438-8677.2009.00312.x.

Ngosong, C., Gabriel, E. & Ruess, L. (2014). Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia, 57: 171-179. DOI: https://doi.org/10.1016/j.pedobi.2014.03.002.

Ocaña-Romo, E., Ferrer-Parra, L., López-Nicolás D.I., Martínez-Castillo, R., Montiel-Cina, J.P., Morales-Hernández, A.R., González-Márquez, A., Portillo-Ojeda, M.L., Sánchez-Sánchez, D.F. & Sánchez, C. (2018). Partial characterization of esterases from Fusarium culmorum grown in media containing di (2-ethyl hexyl phthalate) in solid-state and submerged fermentation. New Biotechnology44: Abstracts Supplement, p. S137, abstract P25-11. DOI: https://doi.org/10.1016/j.nbt.2018.05.1099.

Oksanen, I. (2006). Ecological and biotechnological aspects of lichens. Applied Microbiology and Biotechnology, 73: 723-734. DOI: https://doi.org/10.1007/s00253-006-0611-3.

Omacini, M. (2014). Asexual endophytes of grasses: invisible symbionts, visible imprints in the host neighbourhood. In: Advances in Endophytic Research, (eds V. Verma & A. Gange), pp. 143-157. New Delhi: Springer International Publishing. ISBN: 978-81-322-1574-5. DOI: https://doi.org/10.1007/978-81-322-1575-2_7. VIEW on Amazon.

Osbourn, A.E., O’Maille, P.E., Rosser, S.J. & Lindsey, K. (2012). Synthetic biology. New Phytologist, 196: 671-677. DOI: https://doi.org/10.1111/j.1469-8137.2012.04374.x.

Palmqvist, K., Dahlman, L., Jonsson, A., & Nash, T. (2008). The carbon economy of lichens. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 182-215. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747.  DOI: https://doi.org/10.1017/CBO9780511790478.011.

Paterson, R.R.M. (2006). Fungi and fungal toxins as weapons. Mycological Research, 110: 1003-1010. DOI: https://doi.org/10.1016/j.mycres.2006.04.004.

Peralta, R.M., da Silva, B.P., Gomes Côrrea, R.C., Kato, C.G., Vicente Seixas, F.A. & Bracht, A. (2017). Enzymes from basidiomycetes - peculiar and efficient tools for biotechnology. In: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications, (eds G. Brahmachari, A.L. Demain & J.L. Adrio), pp. 119-149. Amsterdam: Academic Press. An imprint of Elsevier Inc. ISBN: 978-0-12-803725-6. DOI: https://doi.org/10.1016/B978-0-12-803725-6.00005-4. VIEW on Amazon.

Perotto, S., Girlanda, M. & Martino, E. (2002). Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil, 244: 41-53. DOI: https://doi.org/10.1023/A:1020289401610.

Plassard, C. & Fransson, P. (2009). Regulation of low-molecular weight organic acid production in fungi. Fungal Biology Reviews, 23: 30-39. DOI: https://doi.org/10.1016/j.fbr.2009.08.002.

Portillo-Ojeda, M.L., Arteaga-Mejía, M., González-Márquez, A. & Sánchez, C. (2018). Effect of the pH on growth and esterase activity of Fusarium culmorum grown on media supplemented with di (2-ethylhexyl) phthalate in submerged fermentation. New Biotechnology44: Abstracts Supplement p. S138, abstract P25-12. DOI: https://doi.org/10.1016/j.nbt.2018.05.1100.

Prosser, J.I. (2002). Molecular and functional diversity in soil micro-organisms. Plant and Soil, 244: 9-17. DOI: https://doi.org/10.1023/A:1020208100281.

Purvis, W. (2007). Lichens. London: The Natural History Museum. Pp. 112. ISBN-13: 978-0565091538. VIEW on Amazon.

Rasmussen, H.N. (2002). Recent developments in the study of orchid mycorrhiza. Plant and Soil, 244: 149-163. DOI: https://doi.org/10.1023/A:1020246715436.

Rhodes, C.J. (2014). Mycoremediation (bioremediation with fungi) - growing mushrooms to clean the earth. Chemical Speciation & Bioavailability, 26: 196-198. DOI: https://doi.org/10.3184/095422914X14047407349335.

Rinne-Garmston (Rinne), K.T., Peltoniemi, K., Chen, J., Peltoniemi, M., Fritze, H., Peltoniemi, M. & Mäkipää, R. (2019). Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Global Change Biology, in press. Accepted manuscript online DOI: https://doi.org/10.1111/gcb.14594.

Rosling, A., Roose, T., Herrmann, A.M., Davidson, F.A., Finlay, R.D. & Gadd, G.M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 23: 138-144. DOI: https://doi.org/10.1016/j.fbr.2009.09.003.

Rudgers, J.A. & Clay, K. (2007). Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biology Reviews, 21: 107-123. DOI: https://doi.org/10.1016/j.fbr.2007.05.002.

Sabev, H.A., Barratt, S.R., Greenhalgh, M., Handley, P.S. & Robson, G.D. (2006). Biodegradation and biodeterioration of man-made polymeric materials. In: Fungi in Biogeochemical Cycles, (G.M. Gadd, ed.), pp. 212-235. Cambridge, UK: Cambridge University Press. ISBN-10: 0521845793, ISBN-13: 978-0521845793. VIEW on Amazon.

Saikkonen, K. (2007). Forest structure and fungal endophytes. Fungal Biology Reviews, 21: 67-74. DOI: https://doi.org/10.1016/j.fbr.2007.05.001.

Saine, S., Ovaskainen, O., Somervuo, P. & Abrego, N. (2020). Data collected by fruit body- and DNA-based survey methods yield consistent species-to-species association networks in wood-inhabiting fungal communities. Oikos, 129: 1833-1843. DOI: https://doi.org/10.1111/oik.07502.

Sánchez, C. (2020a). Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, article number 107501, in press. DOI: https://doi.org/10.1016/j.biotechadv.2019.107501.

Sánchez, C. (2020b). Microbial capability for the degradation of chemical additives present in petroleum-based plastic products: a review on current status and perspectives. Journal of Hazardous Materials, article 123534. DOI: https://doi.org/10.1016/j.jhazmat.2020.123534.

Sanders, W.B. (2001). Lichens: interface between mycology and plant morphology. BioScience, 51: 1025-1035. DOI: https://doi.org/10.1641/0006-3568(2001)051[1025:LTIBMA]2.0.CO;2.

Sanjana, K., Tanwi, S. & Manoj, K.D. (2016). ‘Omics’ tools for better understanding the plant-endophyte interactions. Frontiers in Plant Science, 7: 955. DOI: https://doi.org/10.3389/fpls.2016.00955.

Sathiyadash, K., Muthukumar, T., Uma, E. & Pandey, R.R. (2012). Mycorrhizal association and morphology in orchids. Journal of Plant Interactions, 7: 238-247. DOI: https://doi.org/10.1080/17429145.2012.699105.

Schmalenberger, A., Duran, A.L., Bray, A.W., Bridge, J., Bonneville, S., Benning, L. G., Romero-Gonzalez, M.E., Leake, J.R. & Banwart, S.A. (2015). Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Scientific Reports, 5: article number 12187. DOI: https://doi.org/10.1038/srep12187.

Schwarze, F.W.M.R. (2007). Wood decay under the microscope. Fungal Biology Reviews, 21: 133-170. DOI: https://doi.org/10.1016/j.fbr.2007.09.001.

Seephonkai, P., Isaka, M., Kittakoop, P., Boonudomlap, U. & Thebtaranonth, Y. (2004). A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370. Journal of Antibiotics, 57: 10-16. DOI: https://doi.org/10.7164/antibiotics.57.10.

Selosse, M.-A., Setaro, S., Glatard, F., Richard, F., Urcelay, C. & Weiß, M. (2007). Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist, 174: 864–878. DOI: https://doi.org/10.1111/j.1469-8137.2007.02064.x.

Selosse, M.-A. & Strullu-Derrien, C. (2015). Origins of the terrestrial flora: a symbiosis with fungi? BIO Web of Conferences, 4: 00009. DOI: https://doi.org/10.1051/bioconf/20150400009.

Seymour, F.A., Crittenden, P.D. & Dyer, P.S. (2005). Sex in the extremes: lichen-forming fungi. Mycologist, 19: 51-58. DOI: https://doi.org/10.1017/S0269915XO5002016.

Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26: 246-265. DOI: https://doi.org/10.1016/j.biotechadv.2007.12.005.

Sherratt, T.N., Wilkinson, D.M. & Bain, R.S. (2005). Explaining Dioscorides’ “Double Difference”: why are some mushrooms poisonous, and do they signal their unprofitability? American Naturalist, 166: 767-775. DOI: https://doi.org/10.1086/497399.

Sieber, T. (2007). Endophytic fungi of forest trees: are they mutualists? Fungal Biology Reviews, 21: 75-89. DOI: https://doi.org/10.1016/j.fbr.2007.05.004.

Simard, S.W., Beiler, K.J., Bingham, M.A., Deslippe, J.R., Philip, L.J. & Teste, F.P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26: 39-60. DOI: https://doi.org/10.1016/j.fbr.2012.01.001.

Singh, J. (1999). Dry rot and other wood-destroying fungi: their occurrence, biology, pathology and control. Indoor and Built Environment, 8: 3-20. DOI: https://doi.org/10.1177/1420326X9900800102.

Singh, V.K., Meena, M., Zehra, A., Tiwari, A., Dubey, M.K. & Upadhy, R.S. (2014). Fungal toxins and their impact on living systems. In: Microbial Diversity and Biotechnology in Food Security, (eds R. Kharwar, R. Upadhyay, N. Dubey, R. Raghuwanshi), pp. 513-530. ISBN 978-81-322-1800-5. DOI: https://doi.org/10.1007/978-81-322-1801-2_47. VIEW on Amazon.

Skiada, V., Avramidou, M., Bonfante, P., Genre, A. & Papadopoulou, K.K. (2020). An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. New Phytologist, online version before inclusion in an issue. DOI: https://doi.org/10.1111/nph.16457.

Skiada, V., Faccio, A., Kavroulakis, N., Genre, A., Bonfante, P. & Papadopoulou, K.K. (2019). Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Fungal Genetics and Biology, accepted manuscript in press. DOI: https://doi.org/10.1016/j.fgb.2019.03.003.

Slippers, B. & Wingfield, M.J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21: 90-106. DOI: https://doi.org/10.1016/j.fbr.2007.06.002.

Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. & Wolseley, P.A. (2009). The Lichens of Great Britain and Ireland (2nd edition). London: The British Lichen Society and The Natural History Museum. Pp. 1046. ISBN 9780954041885. VIEW on Amazon.

Smith, S.E. & Read, D.J. (1997). Mycorrhizal Symbiosis, 2nd edn. London: Academic Press. ISBN-10: 0126528403, ISBN-13: 978-0126528404. VIEW on Amazon.

Soudzilovskaia, N.A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M.C., Gomes, S., Merckx, V. & Tedersoo, L. (2019). FungalRoot: global online database of plant mycorrhizal associations. Cold Spring Harbor Laboratory preprint service bioRxiv: article 717488. DOI: https://doi.org/10.1101/717488.

Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H. Aime, M.C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H. & McCutcheon, J.P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353: 488-492. DOI: https://doi.org/10.1126/science.aaf8287.

Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D.A. and 217 others in the GFBI consortium. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569: 404-408. DOI: https://doi.org/10.1038/s41586-019-1128-0.

Stephens, R.B. & Rowe, R.J. (2020). The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology, published online before inclusion in an issue: article number e02972. DOI: https://doi.org/10.1002/ecy.2972.

Sterkenburg, E., Clemmensen, K.E., Ekblad, A., Finlay, R.D. & Lindahl, B.D. (2018). Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal, 12: 2187-2197. DOI: https://doi.org/10.1038/s41396-018-0181-2.

Stevenson, P.C., Bidartondo, M.I., Blackhall-Miles, R., Cavagnaro, T.R., Cooper, A. and 9 others. (2020). The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees? Plants People Planet, 2: 482-498. DOI: https://doi.org/10.1002/ppp3.10143.

Straatsma, G., Ayer, F. and Egli, S. (2001). Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research, 105: 515-523. DOI: https://doi.org/10.1017/S0953756201004154.

Subowo, Y.B. (2019). Screening of basidiomycetes with laccase activity for lignin degradation on POME. Institute of Physics (IOP) Conference Series: Earth and Environmental Science, 308: conference 1, article number 012013. DOI: https://doi.org/10.1088/1755-1315/308/1/012013.

Sun, Q., Liu, Y., Yuan, H. & Lian, B. (2016). The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi. Microbiology Open, 6: article e00396. DOI: https://doi.org/10.1002/mbo3.396.

Suryanarayanan, T.S., Thirunavukkarasu, N., Govindarajulu, M.B., Sasse, F., Jansen, R. & Murali T.S. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23: 9-19. DOI: https://doi.org/10.1016/j.fbr.2009.07.001.

Suz, L.M., Sarasan, V., Bidartondo, M. & Hodkinson, T.R. (2018). Positive plant-fungal interactions. In: State of the World’s Fungi 2018 (ed K.J. Willis). Report, 92 pp. Royal Botanic Gardens, Kew. ISBN: 978-1-84246-678-0. URL: https://stateoftheworldsfungi.org/2018/ (the PDF of the report is a free download).

Suz, L.M., Bidartondo, M.I., van der Linde, S. & Kuyper, T.W. (2021). Ectomycorrhizas and tipping points in forest ecosystems. New Phytologist, 231: 1700-1707. DOI: https://doi.org/10.1111/nph.17547.

Tagu, D., Lapeyrie, F. & Martin, F. (2002). The ectomycorrhizal symbiosis: genetics and development. Plant and Soil, 244: 97-105. DOI: https://doi.org/10.1023/A:1020235916345.

Taylor, R.S. & Baldwin, N.A. (1991). Surface disruption of an artificial tennis court caused by Scleroderma bovista. The Mycologist, 5: 79. DOI: https://doi.org/10.1016/S0269-915X(09)80099-2.

Taylor, T.N., Krings M. & Taylor, E.L. (2015). Fossil Fungi. San Diego: Academic Press. 398 pp. ISBN-10: 0123877318, ISBN-13: 978-0123877314. DOI: https://doi.org/10.1016/B978-0-12-387731-4.00014-1.

Terrer, C., Vicca, S., Hungate, B.A., Phillips, R.P. & Prentice, I.C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353: 72-74. DOI: https://doi.org/10.1126/science.aaf4610.

Tsai, W.-T. (2017). Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts. Toxics, 5: 23 (13 pp.). DOI: https://doi.org/10.3390/toxics5040023.

Umesha, S., Manukumar, H.M., Chandrasekhar, B., Shivakumara, P., Shiva Kumar, J., Raghava, S., Avinash, P., Shirin, M., Bharathi, T.R., Rajini, S.B., Nandhini, M., Vinaya Rani, G.G., Shobha, M. & Prakash, H.S. (2016). Aflatoxins and food pathogens: impact of biologically active aflatoxins and their control strategies. Journal of the Science of Food and Agriculture, 97: 1698-1707. DOI: https://doi.org/10.1002/jsfa.8144.

van der Heijden, M.G.A. & Horton, T.R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97: 1139-1150. DOI: https://doi.org/10.1111/j.1365-2745.2009.01570.x.

van der Linde, S., Suz, L.M., Orme, C.D.L., Cox, F., Andreae, H. and 37 others. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558: 243-248. DOI: https://doi.org/10.1038/s41586-018-0189-9.

Varma, A., Prasad, R. & Tuteja, N. (eds) (2017). Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Cham, Switzerland: Springer International Publishing. 334 pp. ISBN: 978-3-319-57848-4. DOI: https://doi.org/10.1007/978-3-319-57849-1. VIEW on Amazon.

Varma, S.S., Lakshmi, M.B., Rajagopal, P. & Velan, M. (2017). Degradation of Total Petroleum Hydrocarbon (TPH) in contaminated soil using Bacillus pumilus MVSV3. Biocontrol Science, 22: 17-23. DOI: https://doi.org/10.4265/bio.22.17.

Vasiliki, S., Avramidou, M., Bonfante, P., Genre, A. & Papadopoulou, K.K. (2019). Symbiotic signalling is at the core of an endophytic Fusarium solani-legume association. Cold Spring Harbor Laboratory preprint service bioRxiv: article 740043. DOI: https://doi.org/10.1101/740043.

Veits, M., Khait, I., Obolski, U., Zinger, E., Boonman, A., Goldshtein, A., Saban, K., Seltzer, R., Ben-Dor, U., Estlein, P., Kabat, A., Peretz, D., Ratzersdorfer, I., Krylov, S., Chamovitz, D., Sapir, Y., Yovel, Y. & Hadany, L. (2019). Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters, 22: 1483-1492. DOI: https://doi.org/10.1111/ele.13331.

Velis, C.A. (2014). Global recycling markets - plastic waste: A story for one player – China. Report prepared by FUELogy and formatted by D-waste on behalf of International Solid Waste Association - Globalisation and Waste Management Task Force. ISWA, Vienna. URL: https://www.iswa.org/fileadmin/galleries/Task_Forces/TFGWM_Report_GRM_Plastic_China_LR.pdf.

Veresoglou, S.D., Chen, B. & Rillig, M.C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46: 53-62. DOI: https://doi.org/10.1016/j.soilbio.2011.11.018.

Verma, V. & Gange, A. (eds) (2014). Advances in Endophytic Research. New Delhi: Springer. Pp. 477. ISBN: 978-81-322-1574-5. DOI: https://doi.org/10.1007/978-81-322-1575-2.

Vettorazzi, A. & López de Cerain, A. (2016). Mycotoxins as food carcinogens. In: Environmental Mycology in Public Health: Fungi and Mycotoxins Risk Assessment and Management, (eds C. Viegas, C. Pinheiro, R. Sabino, S. Viegas, J. Brandão & C. Veríssimo), pp. 261-298. Amsterdam: Academic Press, an imprint of Elsevier. ISBN: 978-0-12-411471-5. DOI: https://doi.org/10.1016/B978-0-12-411471-5.00017-X. VIEW on Amazon.

Vieira, W.G. Jr., Cardoso, R.V.C., Fernandes, Â., Ferreira, I.C.F.R., Barros, L., Pardo-Giménez, A., Soares, D.M.M., Stevani, C.V. & Zied, D.C. (2021). Influence of strains and environmental cultivation conditions on the bioconversion of ergosterol and vitamin D2 in the sun mushroom. Journal of the Science of Food and Agriculture, viewed online ahead of publication. DOI: https://doi.org/10.1002/jsfa.11510.

Wall, D.H., Bardgett, R.D. & Kelly, E. (2010). Biodiversity in the dark. Nature Geoscience, 3: 297-298. DOI: https://doi.org/10.1038/ngeo860.

Watling, R. & Harper, D.B. (1998). Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. Mycological Research, 102: 769-787. DOI: https://doi.org/10.1017/S0953756298006157.

Ważny, R., Rozpądek, P., Domka, A., Jędrzejczyk, R.J., Nosek, M., Hubalewska-Mazgaj, M., Lichtscheidl, I., Kidd, P. & Turnau, K. (2021). The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. Science of the Total Environment, 768: article number 144666. DOI: https://doi.org/10.1016/j.scitotenv.2020.144666.

Weber, R.W.S. & Webster, J. (2001). Teaching techniques for mycology: 14. Mycorrhizal infection of orchid seedlings in the laboratory. Mycologist, 15: 55-59. DOI: https://doi.org/10.1016/S0269-915X(01)80077-X.

Weigold, P., El-Hadidi, M., Ruecker, A., Huson, D.H., Scholten, T., Jochmann, M., Kappler, A. & Behrens, S. (2016). A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Scientific Reports, 6: article number 28958. DOI: http://dx.doi.org/10.1038/srep28958.

Williams, J.H., Phillips, T.D., Jolly, P.E., Stiles, J.K., Jolly, C.M. & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. American Journal of Clinical Nutrition, 80: 1106-1122. DOI: https://doi.org/10.1093/ajcn/80.5.1106.

Wohlleben, P. (2017). The Hidden Life of Trees: What They Feel, How They Communicate-Discoveries from a Secret World. Glasgow, UK: William Collins, an imprint of HarperCollins Publishers Limited, 288 pages. ISBN: 9780008218430. VIEW on Amazon.

Wong, J.H. (2013). Fungal toxins. In: Handbook of Biologically Active Peptides (Second Edition), (ed A. Kastin), pp. 166-168. Amsterdam: Academic Press, an imprint of Elsevier. ISBN: 978-0-12-385095-9. DOI: https://doi.org/10.1016/B978-0-12-385095-9.00025-7. VIEW on Amazon.

Worrich, A., Wick, L.Y. & Banitz, T. (2018). Ecology of contaminant biotransformation in the mycosphere: role of transport processes. Advances in Applied Microbiology, 104: 93-133. DOI: https://doi.org/10.1016/bs.aambs.2018.05.005.

Yamin-Pasternak, S. (2011). Ethnomycology: fungi and mushrooms in cultural entanglements. In: Ethnobiology, (eds E.N. Anderson, D. Pearsall, E. Hunn & N. Turner), chapter 13. ISBN: 9780470547854. DOI: https://doi.org/10.1002/9781118015872.ch13. VIEW on Amazon.

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351: 1196-1199. DOI: https://doi.org/10.1126/science.aad6359.

Yu, H., Li, Q., Shen, X., Zhang, L., Liu, J., Tan., Q., Li, Y., Lv, B. & Shang, X. (2020). Transcriptomic analysis of two Lentinula edodes genotypes with different cadmium accumulation ability. Frontiers in Microbiology, 11: article 2249. DOI: https://doi.org/10.3389/fmicb.2020.558104.

Yuan, X., Xiao, S. & Taylor, T.N. (2005). Lichen-like symbiosis 600 million years ago. Science, 308: 1017. DOI: https://doi.org/10.1126/science.1111347.

Zhang, X., Kuča, K., Dohnal, V., Dohnalová, L., Wu, Q. & Wu, C. (2014). Military potential of biological toxins. Journal of Applied Biomedicine, 12: 63-77. DOI: https://doi.org/10.1016/j.jab.2014.02.005.

Updated September, 2021