Chapter 1.10 References and further reading

Anderson, I.C. & Parkin, P.I. (2007). Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. Journal of Microbiological Methods, 68: 248-253. DOI:

Antonelli, A., Fry, C., Smith, R.J., Simmonds, M.S.J., Kersey, P.J., Pritchard, H.W. and 204 others. (2020). State of the World’s Plants and Fungi 2020. Kew, UK: Royal Botanic Gardens. Open access DOI:

Aptroot A, Cáceres MES, Johnston MK, Lücking R. (2016). How diverse is the lichenized fungal family Trypetheliaceae (Ascomycota: Dothideomycetes): a quantitative prediction of global species richness. Lichenologist 48:983-1011. DOI:

Bass, D. & Richards, T.A. (2011). Three reasons to re-evaluate fungal diversity ‘on Earth and in the ocean’. Fungal Biology Reviews, 25: 159-164. DOI:

Boczonádi, I., Jakab, Á., Baranyai, E., Tóth, C.N. Daróczi, L., Kiss, G., Antal, M., Emri, T., Pusztahelyi, T., Fábián, I., Kothe, E. & Pócsi, I. (2019). The potential application of Aspergillus oryzae in the biosorption of rare earth element ions present in seepage waters from a post-uranium-mining area. Abstracts Book, 30th Asilomar Fungal Genetics Conference, abstract 317T, p. 79. Download the PDF of the Abstracts Book from this URL:

Burford, E.P., Kierans, M. & Gadd, G.M. (2003). Geomycology: fungi in mineral substrata. Mycologist, 17: 98-107. DOI:

Carey, N. (2015). Junk DNA: A Journey Through the Dark Matter of the Genome. New York, USA: Columbia University Press. Pp. 360. ISBN-10: 0231170858; ISBN-13: 978-0231170857.

Cheek, M., Nic Lughadha, E., Kirk, P., Lindon, H., Carretero, J. and 14 others. (2020). New scientific discoveries: plants and fungi. Plants People Planet, 2: 371-388. DOI:

Clubbe, C., Ainsworth, A.M., Bárrios, S., Bensusan, K., Brodie, J. and 33 others. (2020). Current knowledge, status, and future for plant and fungal diversity in Great Britain and the UK Overseas Territories. Plants People Planet, 2: 557-579. DOI:

Conceição, A.A., Barbosa Cunha, J.R., Oliveira Vieira, V., Romero Pelaéz, R.D., Mendonça, S., Moreira Almeida, J.R., Souza Dias, E., Gonzaga de Almeida, E. & Gonçalves de Siqueira, F. (2019). Bioconversion and biotransformation efficiencies of wild macrofungi. In: Biology of Macrofungi. Fungal Biology, (eds Singh B.P., Lallawmsanga & Passari A.K.), pp. 361-377. Springer Nature: Cham, Switzerland. ISBN: 9783030026219. DOI: VIEW on Amazon.

Darwin, C. (1881/2017). The Formation of Vegetable Mould Through the Action of Worms with Observations of Their Habits. Publisher: CreateSpace Independent Publishing Platform. ISBN-10: 1978460171, ISBN-13: 978-1978460171 (facsimile reprint available from Amazon); [ebook online at].

Fomina, M., & Skorochod, I. (2020). Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10: article 861. DOI:

Frey, S.D. (2015). The spatial distribution of soil biota. In: Soil Microbiology, Ecology and Biochemistry (Fourth Edition), (ed. E.A. Paul), pp. 223-244. Boston, USA: Academic Press. DOI: VIEW on Amazon.

Gadd, G.M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist, 18: 60-70. DOI:

Gadd, G.M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111: 3-49. DOI:

Gadd, G.M. (2016). Geomycology. In: Fungal Applications in Sustainable Environmental Biotechnology. (ed, D. Purchase), pp. 371-401. Part of the Fungal Biology book series. Cham, Switzerland: Springer International. DOI: VIEW on Amazon.

Gadd, G.M. (2017). The geomycology of elemental cycling and transformations in the environment. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 371-386. Washington, DC: ASM Press. DOI: VIEW on Amazon.

Grossart, H.-P., Wurzbacher, C., James, T.Y. & Kagami, M. (2016). Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecology, 19: 28-38. DOI:

Hawksworth, D.L. (1997). The fascination of fungi: exploring fungal diversity. Mycologist 11: 18-22. DOI:

Hawksworth, D.L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105: 1422-1432. DOI:

Hawksworth, D.L., Hibbett, D.S., Kirk, P.M. & Lücking, R. (2016). (308–310) Proposals to permit DNA sequence data to serve as types of names of fungi. Taxon, 65: 899–900. DOI:

Hawksworth, D.L. & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 79-95. Washington, DC: ASM Press. DOI: VIEW on Amazon.

Haynes, R.J. (2014). Nature of the belowground ecosystem and its development during pedogenesis. Advances in Agronomy, 127: 43-109. DOI:

Hibbett, D.S. (2016). The invisible dimension of fungal diversity. Science, 351: 1150-1151. DOI:
Hunter-Cevera, J. C. (1998). The value of microbial diversity. Current Opinion in Microbiology, 1: 278-285. DOI:

Hongsanan, S., Jeewon, R., Purahong, W., Xie, N., Liu, J.-K., Jayawardena, R.S., Ekanayaka, A.H., Dissanayake, A., Raspé, O., Hyde, K.D., Stadler, M. & Peršoh, D. (2018). Can we use environmental DNA as holotypes? Fungal Diversity, 92: 1-30. DOI:

Hyde, K.D., Bussaban, B., Paulus, B., Crous, P.W., Lee, S., Mckenzie, E.H.C., Photita, W. & Lumyong, S. (2007). Diversity of saprobic microfungi. Biodiversity and Conservation, 16: 7–35. DOI:

Hyde, K.D., Norphanphoun, C., Chen, J., Dissanayake, A.J., Doilom, M., Hongsanan, S., Jayawardena, R.S., Jeewon, R., Perera, R.H., Thongbai, B., Wanasinghe, D.N., Wisitrassameewong, K., Tibpromma, S. & Stadler, M. (2018). Thailand’s amazing diversity - an estimated 55-96% of fungi in northern Thailand are novel. Fungal Diversity, 93: 215-239. DOI:

Hyde, K.D., Jeewon, R., Chen, Y.-J., Bhunjun, C.S., Calabon, M.S. and 19 others. (2020). The numbers of fungi: is the descriptive curve flattening? Fungal Diversity, 103: 219-271. DOI:

Jomura, M., Kuwayama, T., Soma, Y., Yamaguchi, M., Komatsu, M. & Maruyama, Y. (2020). Mycelial biomass estimation and metabolic quotient of Lentinula edodes using species-specific qPCR. PLoS ONE, 15: article number e0232049. DOI:

Kirtzel, J., Siegel, D., Krause, K. & Kothe, E. (2017). Stone-eating fungi: mechanisms in bioweathering and the potential role of laccases in black slate degradation with the basidiomycete Schizophyllum commune. Advances in Applied Microbiology, 99: 83-101. DOI:

Kirtzel J., Madhavan, S., Wielsch, N., Blinne, A., Hupfer, Y., Linde, J., Krause, K., Svatoš, A. & Kothe, E. (2018). Enzymatic bioweathering and metal mobilization from black slate by the basidiomycete Schizophyllum commune. Frontiers in Microbiology, 9: article 2545. DOI:

Leavitt, S. D., Divakar, P. K, Crespo, A. & Lumbsch, H. T. (2016). A matter of time - understanding the limits of the power of molecular data for delimiting species boundaries. Herzogia, 29: 479–492. DOI:

Lepp, N.W., Harrison, S.C.S. & Morrell, B.G. (1987). A role for Amanita muscaria L. in the circulation of cadmium and vanadium in a non-polluted woodland. Environmental Geochemistry and Health, 9: 61-64. DOI:

Lok, C. (2015). Mining the microbial dark matter. Nature, 522: 270-273. DOI:

Lozano Garza, O.A. & Reynaga Peña, C.G. (2017). Los hongos desde la perspectiva educativa en México [Fungi from the educational perspective in Mexico]. In: Enfoques en Investigación e Innovación en Educación: Vol. 2. Prácticas educativas digitales, pedagogía y curriculum, (eds A. Domínguez, J. Sánchez & T. Guerra), pp. 281-303. Monterrey, México: REDIIEN. ISBN: 978-607-96725-2-2.

Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E.D. & Eastmond, P.J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017: article aan0081. DOI:

Miller, R.W. & Gardiner, D.T. (2004). Soils in our Environment, 10th edn. Upper Saddle River, NJ: Pearson/Prentice Hall Publishers, 656 pp. ISBN 0130481955. VIEW on Amazon.

Mitchell, J.I. & Zuccaro, A. (2006). Sequences, the environment and fungi. Mycologist, 20: 62–74. DOI:

Money, N.P. (2014). Microbiology: A Very Short Introduction. Oxford: Oxford University Press. ISBN-13: 9780199681686. DOI: VIEW on Amazon.

Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B. & Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biology, 9: e1001127. DOI:

Mueller, G.M. & Schmit, J.P. (2007). Fungal biodiversity: what do we know? What can we predict? Biodiversity and Conservation, 16: 1-5. DOI:

Mueller, G.M., Schmit, J.P., Leacock, P.R. Buyck, B., Cifuentes, J., Desjardin, D.E., Halling, R.E, Hjortstam, K., Iturriaga, T., Larsson, K.-H., Lodge, D.J., May, T.J., Minter, D., Rajchenberg, M., Redhead, S.A., Ryvarden, L., Trappe, J.M., Watling, R. & Wu, Q. (2007). Global diversity and distribution of macrofungi. Biodiversity and Conservation, 16: 37-48. DOI:

Needelman, B.A. (2013). What Are Soils? Nature Education Knowledge, 4(3): 2-10. URL:

Nic Lughadha, E., Bachman, S.P., Leão, T.C.C., Forest, F., Halley, J.M. and 25 others. (2020). Extinction risk and threats to plants and fungi. Plants People Planet, 2: 389-408. DOI:

O’Leary, J., Journeaux, K.L., Houthuijs, K., Engel, J., Sommer, U., Viant, M.R., Eastwood, D.C., Müller, C. & Boddy, L. (2020). Space and patchiness affect diversity-function relationships in fungal decay communities. The ISME Journal, (2020). DOI:

Paton, A., Antonelli, A., Carine, M., Forzza, R.C., Davies, N. and 17 others. (2020). Plant and fungal collections: current status, future perspectives. Plants People Planet, 2: 499-514. DOI:

Pearce, T.R., Antonelli, A., Brearley, F.Q., Couch, C., Campostrini Forzza, R. and 11 others. (2020). International collaboration between collections-based institutes for halting biodiversity loss and unlocking the useful properties of plants and fungi. Plants People Planet, 2: 515-534. DOI:

Planý, M., Pinzari, F., Šoltys, K., Kraková, L., Cornish, L., Pangallo, D., Jungblut, A.D. & Little, B. (2021). Fungal-induced atmospheric iron corrosion in an indoor environment. International Biodeterioration & Biodegradation, 159: article number 105204. DOI:

Prosser, J.I. (2002). Molecular and functional diversity in soil microorganisms. Plant and Soil, 244: 9-17. DOI:

Qiu, Z., Wang, J., Delgado-Baquerizo, M., Trivedi, P., Egidi, E., Chen, Y.-M., Zhang, H. & Singh, B.K. (2020). Plant microbiomes: do different preservation approaches and primer sets alter our capacity to assess microbial diversity and community composition? Frontiers in Plant Science, 11: article 993. DOI:

Renfrew, C. & Bahn, P. G. (2016). Archaeology: Theories, Methods, and Practice, 7th edn. London: Thames & Hudson Ltd. 640 pp. (see Chapter 7) ISBN 0500284415. VIEW on Amazon.

Riehl, S., Zeidi, M. & Conard, N.J. (2013). Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 341: 65-67. DOI:

Ritz, K. & Young, I.M. (2004). Interactions between soil structure and fungi. Mycologist, 18: 52-59. DOI:

Robson, G.D. (2017). Fungi: geoactive agents of metal and mineral transformations. Environmental Microbiology, 19: 2533-2536. DOI:

Schmit, J.P. & Mueller, G.M. (2007). An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation, 16: 99-111. DOI:

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. & the Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109: 6241-6246. DOI:

Shearer, C.A., Descals, E. Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H.A., Schmit, J.P., Thorton, H.A. & Voglymayr, H. (2007). Fungal biodiversity in aquatic habitats. Biodiversity and Conservation, 16: 49-67. DOI:

Simmonds, M.S.J., Fang, R., Wyatt, L., Bell, E., Allkin, B. and 7 others. (2020). Biodiversity and patents: overview of plants and fungi covered by patents. Plants People Planet, 2: 546-556. DOI:

Staley, J.T. (1997). Biodiversity: are microbial species threatened? Current Opinion in Biotechnology, 8: 340-345. DOI:

Staley, J.T., Palmer, F. & Adams, J.B. (1982). Microcolonial fungi: common inhabitants on desert rocks? Science, 215: 1093-1095. DOI:

Sutherland, I.W. (2001). The biofilm matrix - an immobilized but dynamic microbial environment. Trends in Microbiology, 9: 222-227. DOI:

Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. (2018). Environmental DNA For Biodiversity Research and Monitoring. Oxford, UK: Oxford University Press. 272 pp. ISBN-10: 0198767285, ISBN-13: 978-0198767282. VIEW on Amazon.

Tang, C., Xu, Q., Zhao, M., Wang, X. & Kang, Z. (2018). Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: the emerging genomics era. The Crop Journal, 6: 60-67. DOI:

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S. and 53 others. (2014). Global diversity and geography of soil fungi. Science, 346: article 1256688. DOI:

Tedersoo, L., Bahram, M., Puusepp, R., Nilsson, R.H., James, T.Y. (2017). Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome, 5: 42 (10 pp.). DOI:

Tibbett, M. & Carter, D.O. (2003). Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist, 17: 20-24. DOI:

Torsvik, V. & Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5: 240-245. DOI:

Truong, C., Mujic, A.B., Healy, R., Kuhar, F., Furci, G., Torres, D., Niskanen, T., Sandoval-Leiva, P.A., Fernández, N., Escobar, J.M., Moretto, A., Palfner, G., Pfister, D., Nouhra, E., Swenie, R., Sánchez-García, M., Matheny, P.B. & Smith, M.E. (2017). How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytologist, 214: 913-919. DOI:

Voroney, R.P. & Heck, R.J. (2015). The soil habitat. In: Soil Microbiology, Ecology and Biochemistry (Fourth Edition), (ed. Paul, E.A), pp. 15-39. Boston, USA: Academic Press. DOI: VIEW on Amazon.

Wellington, E. M., Berry, A. & Krsek, M. (2003). Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Current Opinion in Microbiology, 6: 295-301. DOI:

Whittle, A. (2001). The first farmers. In: The Oxford Illustrated History of Prehistoric Europe, (ed B.W. Cunliffe), pp. 136-166. Oxford, UK: Oxford University Press, 568 pp. ISBN 0192854410. VIEW on Amazon.

Williams, C., Walsh, A., Vaglica, V., Sirakaya, A., da Silva, M. and 8 others. (2020). Conservation policy: helping or hindering science to unlock properties of plants and fungi. Plants People Planet, 2: 535-545. DOI:

Willis, K.J. (ed) (2018). State of the World’s Fungi 2018. Report, 92 pp. Royal Botanic Gardens, Kew. ISBN: 978-1-84246-678-0. URL: (the PDF of the report is a free download).

Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X. & Xiang, M. (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 10: 127-140. DOI:

Wu, D., Wu, M., Halpern, A., Rusch, D.B., Yooseph, S., Frazier, M., Venter, J.C. & Eisen, J.A. (2011). Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS ONE, 6: article number e18011. DOI:

Zhang, L., Gadd, G.M. & Li, Z. (2020). Microbial biomodification of clay minerals. Advances in Applied Microbiology, in press. DOI:

Updated May, 2021