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Abstract 
In mycelial fungi the formation of hyphal branches is the only way in which the number of growing 
points can be increased. Cross walls always form at right angles to the long axis of a hypha, and 
nuclear division is not necessarily linked to cell division. Consequently, no matter how many nuclear 
divisions occur and no matter how many cross walls are formed there will be no increase in the 
number of hyphal tips unless a branch arises. Evidently, for the fungi, hyphal branch formation is the 
equivalent of cell division in animals, plants and protists. The position of origin of a branch, and its 
direction and rate of growth are the crucial formative events in the development of fungal tissues and 
organs. Kinetic analyses have shown that fungal filamentous growth can be interpreted on the basis of 
a regular cell cycle, and sencourage the view that a mathematical description of fungal growth might 
be generalised into predictive simulations of tissue formation. An important point to emphasise is that 
all kinetic analyses published to date deal exclusively with physical influences on growth and 
branching kinetics (like temperature, nutrients, etc.). In this chapter we extrapolate from the kinetics so 
derived to deduce how the biological control events might affect the growth vector of the hyphal apex 
to produce the patterns of growth and branching that characterise fungal tissues and organs. This 
chapter presents: (i) a review of the published mathematical models that attempt to describe fungal 
growth and branching; (ii) a review of the cell biology of fungal growth and branching, particularly as 
it relates to the construction of fungal tissues; and (iii) a section in which simulated growth patterns 
are developed as interactive three-dimensional computer visualisations in what we call the Neighbour-
Sensing model of hyphal growth. Experiments with this computer model demonstrate that geometrical 
form of the mycelium emerges as a consequence of the operation of specific locally-effective hyphal 
tip interactions. It is not necessary to impose complex spatial controls over development of the 
mycelium to achieve particular morphologies. 
 
Introduction 

During the life history of many fungi, hyphae differentiate from the vegetative form that ordinarily 
composes a mycelium and aggregate to form tissues of multihyphal structures. These may be linear 
organs (that emphasise parallel arrangement of hyphae): 

• strands, 
• rhizomorphs 
• fruit body stipes, 

or globose masses (that emphasise interweaving of hyphae): 
• sclerotia 
• fruit bodies and other sporulating structures of the larger Ascomycota and 

Basidiomycota. 
In microscope sections, fungal tissue appears to be comprised of tightly packed cells resembling 

plant tissue but the hyphal (that is, tubular) nature of the components can always be demonstrated by 
reconstruction from serial sections or by scanning electron microscopy. Clearly, hyphal cells do not 
proliferate in the way that animal and plant cells do. 

Plants, animals and fungi are distinct eukaryotic Kingdoms and there are fundamental differences 
between the three Kingdoms in the way that the morphology of multicellular structures is determined. 
A characteristic of animal embryology is the movement of cells and cell populations. In contrast, plant 
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morphogenesis depends upon control of the orientation and position of the daughter cell wall, which 
forms at the equator of the mitotic division spindle. Fungi also have walls, like plants, but their basic 
structural unit, the hypha, exhibits two features which cause fungal morphogenesis to be totally 
different from plant morphogenesis. These are that: 

• hyphae extend only at their apex, and 
• cross walls form only at right angles to the long axis of the hypha. 

One consequence of these “rules” is that fungal morphogenesis depends on the placement of hyphal 
branches. Increasing the number of growing tips by hyphal branching is the equivalent of cell 
proliferation in animals and plants. To proliferate, the hypha must branch, and to form an organised 
tissue the position of branch emergence and its direction of growth must be controlled. 

Another way in which fungal morphogenesis differs from that in other organisms is that no lateral 
contacts between fungal hyphae analogous to the plasmodesmata, gap junctions and cell processes that 
interconnect neighbouring cells in plant and animal tissues have ever been found. Their absence 
suggests that morphogens used to regulate development in fungi will be communicated through the 
extracellular environment. Since published kinetic analyses deal exclusively with external influences 
(like nutrient status, culture conditions, etc.) on growth and branching kinetics, this encourages our 
view that a mathematical description of fungal vegetative growth might be generalised into predictive 
simulations of tissue formation, leading to better understanding of the parameters that generate 
specific morphologies. 
 
Kinetics of Mycelial Growth and Morphology  

Kinetic analyses show that fungal filamentous growth can be interpreted on the basis of a regular 
cell cycle, and in this section we review published mathematical models that attempt to describe 
fungal growth and branching in the vegetative (mycelial) phase. 
 

Measurement Methodologies 
Measurements of hyphal diameter, hd, and hyphal length, hl, allow hyphal volume, hv, to be 

calculated, which when multiplied by the average density of the composite hyphal material, ρ, gives an 
estimate of biomass, X. Taking these measurements over a series of time intervals enable hyphal 
extension rate, E, and the rate of increase of biomass to be calculated. Currently, automated image 
analysis systems permit real-time analysis of these microscopic parameters1, and some of these 
analyses suggest that hyphal tips grow in pulses2, although this is debatable3, particularly because the 
observations use video techniques and the pixelated image generated by both analogue and digital 
cameras will cause pulsation artefacts4. 

The most important macroscopic parameter is total biomass. Total hyphal length is proportional to 
total biomass, if hd and ρ are assumed to be constant, but measurement can be difficult. Non-
destructive mass measurement is rarely feasible and in most cases separating the mycelium from the 
substratum is difficult (and sometimes impossible). Acuña et al.5 developed a neural network that they 
trained to correlate colony radius with colony biomass. However, this relationship is only relevant to 
circular mycelia and measurements in two dimensions. More general relationships with biomass have 
been suggested for particular chemical compounds, the most promising of which is ergosterol, a sterol 
characteristic of fungal membranes6, 7.  

 
Modelling Branching 

A germ-tube hypha will grow in length exponentially at a rate that increases until a maximum, 
constant extension rate is reached. Thereafter, it increases in length linearly8. The primary and 
subsequent branches behave similarly. Trinci9 offered a solution to the riddle of how biomass 
(proportional to total hyphal length) can increase exponentially when individual hyphae extend 
linearly by proposing that it was due to the exponential increase in tips due to branching.  

Katz et al.8 studied the growth kinetics of Aspergillus nidulans on three different media, each with a 
distinct specific growth rate. From these observations they proposed a number of general relationships 
that are conveyed in equation (1), elucidated by Steele & Trinci10: 

GE maxµ=  (1) 

where E  is the mean tip extension rate, µmax is the maximum specific growth rate, and G is the hyphal 
growth unit. G is defined as the average length of a hypha supporting a growing tip according to 
equation (2): 
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where Lt is total mycelial length, and Nt is number of tips.  
The hyphal growth unit is approximately equal to the width of  the peripheral growth zone (more 

accurately, the volume of the hyphae within that zone), which is a ring-shaped peripheral area of the 
mycelium that contributes to radial expansion of the colony11, 12. Hyphal tips growing outside this zone 
will only fill space within the colony. G is an indicator of branching density; Katz et al.8 postulated 
that a new branch is initiated when the capacity for a hypha to extend increases above E , thereby 
regulating G ≈ 1 unit.  

Prosser & Trinci13 described a model that successfully accounted for exponential growth and 
branching, constructed on the premise that tips extend by the incorporation into the tip membrane of 
new material that arrives packaged in vesicles14. This mechanism was modelled in two steps: (i) 
vesicles were produced in hyphal segments distal to the tip and were absorbed in tip segments; (ii) 
vesicles flowed from one segment to the next, towards the tip. Apical branching initiated when the 
concentration of vesicles in the tip exceeded the maximum rate that the apex could absorb the new 
material. Varying the ratio of these steps produced different flow rates and branching patterns. The 
model also incorporated the concept of the ‘duplication cycle’ (ref 15). This was achieved by 
increasing the number of nuclei in the model mycelium at a rate proportional to the rate of biomass 
increase. Septa were then assumed to form in growing hyphae when the volume of the apical 
compartment per nucleus breached a threshold level. This provided for initiation of lateral branches by 
assuming that vesicles accumulated behind septa to a concentration comparable to that which initiated 
apical branching. This model achieved good agreement with experimental data for total mycelial 
length, number of hyphal tips, and hyphal growth unit length in Geotrichum candidum13. In an 
adaptation of this model, Yang et al.16 used a stochastic element to account for the branching process: 
branching site and direction of branch growth being generated by probability functions. This gave rise 
to a much more realistic mycelial shape.  
 
Describing Branching Patterns 

Leopold17 examined the generality of natural branching systems in trees and streams. Based on the 
classification system of Horton18, she labelled each branch of a tree or river network depending on 
how many tributary branches it supported. First-order branches have no tributaries; second-order 
branches support only first-order branches; a third-order branch supports only first and second-order 
branches; etc. She also measured the lengths of each branch to obtain an average value for each order 
of branching (the length of an n-order branch includes the length of its longest (n-1)-order tributary). 
She found that straight-line plots resulted when branch order was plotted against the logarithm of (i) 
the number of branches of a given order, and (ii) the average length of a branch of a given order. The 
gradient of these lines was interpreted as (i) the branching ratio (BR = the average number of n-order 
branches for each (n+1)-order branch); and (ii) the length ratio (LR = the average length of each n-
order branch as a multiple of the average length of each (n-1)-order branch). Observations suggest that 
the values of these ratios showed little variation over a range of tree species (BR = 4.7 - 6.5; LR = 2.5 
- 3.6) and river networks (BR=3.5; LR=2.3). 
 
Analysing Fungal Mycelia 

Gull19 applied Leopold’s analysis to the branching characteristics of mycelia of the filamentous 
fungus, Thamnidium elegans, and observed branching and length ratios of 3.8 and 4.0, respectively, 
for a third-order system and 2.6 and 2.7 for a fourth-order system. Though it gave no biological insight 
into the mechanisms of branching, Gull’s work demonstrated that mycelia employ branching as a 
strategy for colonising the maximum area of space using the minimum total mycelial length, and 
indicate that the values obtained can be interpreted as a quantification of branching frequency. 

Another approach to quantifying branching frequency relies on the mathematics of fractal geometry. 
In the box-counting method of fractal analysis a grid of boxes, each with side length ε, is placed over 
the pattern, and the number of boxes, Nbox, that are intersected by the pattern is counted. If a pattern is 
fractal, it will be ‘self-similar’ at all scales. This means that a true fractal pattern has an infinite length. 
However, the geometry of the pattern limits the degree to which it can fill the plane. This is quantified 
in terms of the fractal dimension, D, according to the formula: 

Nbox (ε) = Cε-D (3) 
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where C is a constant. A straight line has a fractal dimension, D = 1, and a completely filled plane has 
D = 2.  

By looking at higher and higher resolutions (i.e. in the limit ε → 0) the repeating pattern will be 
revealed to cover a limited proportion of the plane. When the logarithm of Nbox is plotted against the 
logarithm of (1/ε), a straight line is obtained with gradient equal to D. When applied to fungal mycelia, 
ε is limited by the hyphal diameter microscopically and by the mycelial diameter macroscopically. 
Thus, mycelia are not true fractals. However, this range is sufficient to allow reasonably accurate 
regression analysis for D, and thus quantification of the space filling capacity, or branching frequency, 
of mycelia can be obtained. 

Obert et al.20 applied this method to mycelia of Ashbya gossypii. They found that mycelia did indeed 
behave as fractals, and calculated a fractal dimension, D = 1.94. Such a high value for D indicates a 
mature mycelium whose centre has been almost homogenously filled by branching hyphae. For the 
edge of mycelia they calculated D = 1.45. Thus, as a mycelium develops its fractal dimension 
converges towards 2 when the whole mycelium is considered and towards 1.5 when only the edge is 
considered. Ritz & Crawford21 and Jones et al.22 corroborated these findings. 

Matsuura & Miyazima23 used a different form of fractal analysis to quantify the ‘roughness’ of the 
edges of mycelia grown at different temperatures and on different media. Unfavourable conditions 
(e.g. low temperature, low nutrient concentration or stiff media) were found to produce rough edges 
corresponding to a lower branching frequency. 

The above analyses result in a mathematical expression of the ecological description of the dual 
function of the fungal mycelium: that it serves to explore, and to capture resources. A rapidly growing, 
sparsely branched mycelium is emphasising exploration. One in which branching density increases 
towards homogeneity is maximising resource capture. 
 
Generating a Circular Mycelium 

This is all well and good, but the findings could apply to a mycelium of any shape, yet the 
fundamental morphogenetic truth about fungi is that a germinated spore on a surface (like an agar 
plate) will soon produce a circular colony. Testing how circularity arises requires kinetic analyses to 
be elaborated into simulations and this involves more demanding calculations. 

The models so far described are relatively simple kinetic descriptions that, for the most part, lend 
themselves to manual calculation. Cohen24 pioneered computer analysis by devising a program that 
was able to generate a range of branching patterns found in the natural world from a set of simple 
growth and branching rules. In his model growth occurred only at the tip and branching was only 
initiated behind the tip. Thus, it is directly applicable to mycelial growth of most fungi. In this model 
growth proceeded with respect to local density fields, calculated with reference to 36 sample points 
spaced 10° apart around the circumference of a circle centred on a growing tip, and quantifying the 
pattern density in the locality. Local density minima were key parameters that directed growth into 
unoccupied space. Branching probability was also made a function of local density minima. A random 
trial incorporated into the program decided, independently, if branch initiation should occur. Finally, 
the direction of both growth and branching were dependent on a ‘persistence factor’ that quantified to 
what degree they continued in the same direction in spite of gradients in the density field. The 
persistence factor acts rather like inertia on a moving body – changes in direction are gradual rather 
than instantaneous. When these rules were iterated, with the persistence factor for growth nullified (i.e. 
growing tips proceeded in a straight line), a circular branching pattern emerged. 

Hutchinson et al.25 developed this work further by applying it directly to mycelial colonies of Mucor 
hiemalis. They determined the variability of tip growth rate, distance between branches, and branching 
angle throughout the colonies. They were then able to fit these data to known distribution curves with 
defined probability density functions. Tip growth rate was found to follow a half-normal distribution, 
distance between branches followed a gamma distribution, and branching angle followed a normal 
distribution. This formed the basis for a model in which values for the three specified variables were 
generated from the respective probability density functions over a series of time intervals. This model 
generates a circular mycelium. 

This came as something of a surprise because the model includes no allowances for tropic 
interactions between hyphae. Yet, it seems a reasonable assumption that the readily-observed fact that 
growing hyphae actively avoid each other (= negative autotropism, observed by Robinson26, 27, Trinci 
et al.28 and Hutchinson et al.25 among others), plays a role in determining spatial organisation in 
mycelia, especially colony circularity. 
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Indermitte et al.29 constructed models of mycelial growth with the specific intention of answering 
the question “How does circularization happen?” Variants of the model considered cases in which 
behaviour was completely random; where hyphae were forbidden from crossing other hyphae; where 
hyphal growth direction depended on diffusion of inhibitory substances from the mycelium into the 
medium; and where, in addition to diffusion of inhibitory substances, growth rate depended on the 
rank of the branch. All variants generated circularity. Although the method by which simulations were 
made is not described in the paper, the authors claim that experimentation with their model indicated 
that tropism increased the growth efficiency, where the latter was judged by the occupation of the 
surface (the ratio of biomass used to area of medium covered).  

It is highly significant that a purely stochastic approach can generate realistically circular colony 
morphology, but it does not follow that tropisms and hyphal interactions are irrelevant to modelling 
hyphal growth. In real life, hyphae certainly do use autotropic behaviour (positive and negative) to 
control spatial organisation in particular regions of the mycelium; and where the hyphal density is 
high, as in fungal tissues, interactions are inevitable. However, we are not convinced that the rule 
“crossing of hyphae is not allowed” is realistic, though it is a crucial feature of the Indermitte et al.29 
model. Even a casual glance at most fungal mycelia and tissues will reveal numerous interweaving 
hyphae. Even the commonly-applied informal description “hyphal mat” implies a woven texture. 
 
Tropism and Hyphal Interactions 

Edelstein30 considered such interactions, but her approach differed from the above by considering 
the mechanisms operating in the mycelium as a whole rather than in discrete hyphae. She assumed that 
growth occurred at a constant rate throughout the mycelium. This she set at µmax and so also limited 
her model to a tangential abstraction of the growth curve. Her model owes something to Cohen24 in 
that it considers the density of the mycelium with respect to space as a key feature. Two density 
parameters were defined: 

p = p(x,t) the hyphal density per unit area 
n = n(x,t) the tip density per unit area 

and the model was then based on two partial differential equations: 

δ−=
∂
∂

En
t
p  (4) 

  

σ+
∂
∂

−=
∂
∂

x
En

t
n  (5) 

where δ = δ(p) is the rate of hyphal death, σ = σ(n,p) is the rate of tip creation, and En can be 
considered as tip flux.  

Edelstein30 also defined, in mathematical terms, all the hyphal interactions that affect the parameter 
n, and which are contained in the function σ. These included both branching mechanisms, as well as 
tip death and tip-tip and tip-hypha anastomoses.  

She then used phase plane analysis to determine which of various combinations of hyphal 
interactions, expressed mathematically in the function σ, had bounded non-negative solutions of 
equations (4) and (5). These represented combinations that yielded spatially propagating colonies. Her 
results showed that when δ = 0, only colonies that branched dichotomously and formed tip-hypha 
anastomoses could propagate. However, when δ > 0, most combinations of hyphal interactions yielded 
propagating colonies. Thus, hyphal death was shown to be an important feature of mycelial growth; in 
addition to the density-dependent distribution which was an initial criterion of the model.  

Ferret et al.31 adopted a similar approach to Edelstein30, using two partial differential equations that 
considered parameters defined in dimensions of density. However, they sought to apply their model to 
bulk cultures by adjusting mean tip extension rate ( E ) with respect to biomass, X. This adjustment 
was done by collecting data that quantified how E varied when two hyphae came into close proximity 
with each other. This effect was incorporated into the differential equation concerned with the rate of 
change of biomass density (proportional to hyphal-density) so that it was more likely to be applied in 
regions where the density of biomass was high, and had a greater effect on regions where the density 
of tips was high. Thus, E  decreased as the mycelium grew and biomass increased. Such an approach 
provides an alternative to incorporating hyphal death into the model that has the advantage of also 
affecting E , thus limiting growth in a manner typical of batch culture, and, we speculate, perhaps also 
hyphal masses that contribute to fruiting bodies.  
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All of the published work on fungal growth kinetics has been devoted to growth of mycelium, and 
particularly biomass production in fermenters. It is especially important that models of mycelial 
growth can form the foundation for modelling pellet formation in liquid media16, 32 as this can impact 
on the design of bioreactors, but we do not wish to examine models primarily intended for application 
to bulk cultures at this time. Another approach to the subject we will not deal with here considers 
substrate utilisation as a means of describing and quantifying the growth process, as pioneered by 
Monod33. Edelstein & Segel34 and Mitchell35, amongst others, have pursued this approach 
successfully. This also has obvious biotechnological significance. 
 
Opinions 

In many respects the mycelium is the least interesting growth form. It is the ‘default’ growth mode 
of the fungal cell and any changes that occur in it are imposed by external forces (nutrients, 
environmental conditions, etc.). Of much greater biological interest is the way in which the ‘default’ 
growth mode might be altered by internal (that is, self-imposed) controls to generate the numerous 
differentiated cells that hyphae can produce and the native interactions between hyphae that cause 
them to co-operate and co-ordinate in the morphogenesis of fungal tissues. 

Although some attempt has been made to extend the vesicle supply centre model of apical growth14 
into 2-dimensional and 3-dimensional models of apical growth and differentiation36, 37, we are not 
aware of any kinetic analysis of fungal mycelial growth in three dimensions that might contribute to 
understanding fungal tissue morphogenesis. It is certain, though, that the equation E = µG (Equation 1) 
is fundamental to understanding branching kinetics and that the ratio E/µ can tell us a lot about 
mycelial morphology, as it relates to the hyphal growth unit length, G, which can also be expressed as 
a volume38. Observation has shown that temperature increases do not affect G in some species. 
However, paramorphogens have been identified that do alter this ratio and hence G and morphology39. 
In our vector based Neighbour-Sensing mathematical model, which is introduced below, the inclusion 
of certain tropism vectors is also able to alter this ratio by affecting the parameter E and results in a 
striking array of different morphologies, some of which seem to suggest a morphogenetic process that 
goes beyond mycelial growth and towards differentiated tissues.  

In the next section we describe briefly the sorts of tissues and hyphal interactions that must be 
explained eventually, and in the final section of this chapter we will describe progress in modelling 
key morphogenetic processes. 
 
Construction of Fungal Tissues 
Development of any multicellular structure in fungi requires modification of the normal growth 
pattern of a vegetative mycelium so that hyphae no longer characteristically diverge, but grow towards 
one another to co-operate in forming the differentiating organ40-42. The hyphal tip is an invasive, 
migratory structure. Its direction of growth after initial branch emergence must be under precise 
control as it determines the nature and relationships of the cells the hyphal branches will form. 
 
Linear Organs – Strands, Rhizomorphs and Stems 

Formation of parallel aggregates of hyphae (= mycelial strands and cords) is common as they 
provide the main translocation routes for the mycelium. They are formed in mushroom cultures to 
channel nutrients towards developing fruit bodies; they are also formed by mycorrhizal fungi, 
gathering nutrients for the host. Some fungi produce rhizomorphs, which have highly differentiated 
tissues and show extreme apical dominance. There is often a gradation of increasing differentiation 
between strand, cord (or rhizomorphs) and fruit body stipe (= stem). Linear organs arise when young 
branches adhere to, and grow over, an older leading hypha. From the beginning, some of the hyphae 
may expand to become wide-diameter but thin-walled hyphae, whilst narrow hyphal branches 
(‘tendril’ hyphae) intertwine around the inflated hyphae (Fig. 1). 
 
Globose Structures -Sclerotia and Fruit Bodies 

Sclerotia are tuber-like, with concentric zones of tissue forming an outer rind and inner medulla, 
with a cortex sometimes between them. They pass through a period of dormancy before utilizing 
accumulated reserves to ‘germinate’, often producing fruiting bodies immediately. 
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Figure 1. Two scanning electron micrographs of wide and narrow hyphae intertwined in the stem 
tissues of the small field mushroom, Coprinus cinereus. Presumably this pattern of growth is 
produced by positive autotropisms which ensure that the hyphae that expand to become wide diameter 
initially grow parallel with one another, and other tropisms that allow the narrow hyphae to grow 
around and intermingle with inflated hyphae. 

 
Fruiting bodies are responsible for producing and distributing spores formed following meiosis. In 

ascomycetes, the sexually produced ascospores are enclosed in an aggregation of hyphae termed an 
ascoma. Ascomata are formed from sterile hyphae surrounding the developing asci, and occur in 
nature in forms such as truffles and morels. The fruit-bodies of basidiomycetes, the mushrooms, 
toadstools, bracket fungi, puff-balls, stinkhorns, bird’s nest fungi, etc., are all examples of basidiomata 
which bear the sexually produced basidiospores on basidia in the spore-bearing hymenial layers. These 
hymenia are constructed from branches of determinate growth in a precise spatial and temporal 
arrangement. A hyphal tip in the ‘embryonic’ protohymenium has a probability of about 40% of 
becoming a cystidium. Cystidia are large, inflated cells which are readily seen in microscope sections. 
When a cystidium arises, it inhibits formation of further cystidia in the same hymenium within a 
radius of about 30 µm. The distribution pattern of cystidia is consistent with the activator-inhibitor 
model that suggests that an activator autocatalyses its own synthesis, and interacts with an inhibitor 
that inhibits synthesis of the activator. As a result, only about 8% of the hymenial hyphal branches 
actually become cystidia; the rest become basidia, which proceed to karyogamy and initiate the 
meiotic cycle (which ends with sporulation) (Fig. 2). 

Sterile packing cells, called paraphyses, then arise as branches of sub-basidial cells and insert into 
the hymenium (Fig. 3). About 75% of the paraphysis population is inserted before the end of meiosis, 
the rest insert at later stages of development. There is, therefore, a defined temporal sequence: 
probasidia and cystidia appear first and then paraphyses arise as branches from sub-basidial cells. 
Another cell type, cystesia (adhesive cells), differentiate when a cystidium grows across the gill space 
and contacts the opposing hymenium (Fig. 2). 
 
Simulating the Growth Patterns of Fungal Tissues 

Most models published so far simulate growth of mycelia on a single plane. However, two 
dimensional space has some specific peculiarities that can affect the conclusions: forbidding crossings 
between hyphae in the Indermitte et al. models29 being a case in point. In a real three dimensional 
world a large number of points can be connected without the need for the connection paths to cross; 
whereas the number of such points is limited on a flat plane. The need to cross will also have effect on 
models  where  patterning is based  on a  hyphal  density  field,  generated by  all parts  of  the growing  
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Figures 2 and 3. Light micrographs of glycolmethacrylate sections of immature hymenia of the small 
field mushroom, Coprinus cinereus. Fig. 2 is the younger of the two stages shown, and the large cell in 
that Figure is a cystidium. Only a minority of the hyphal tips that make up the hymenium differentiate 
into cystidia because each cystidium establishes an inhibitory morphogenetic field around itself. Fig. 3 
shows that the densely-stained branches that can be seen inserting between the basidia in Fig. 2, 
rapidly differentiate into inflated paraphyses, and in fact arise as branches from the bases of the 
basidia.  Note also that extension growth of these hyphal tips is halted in a co-ordinated way so that the 
basidia remain as projections above the paraphyseal pavement. Overall, these images show that to 
construct hymenial tissue the normal divergent growth of the vegetative colony is modified to become 
determinate, positively autotropic, with distinctly differentiated hyphal tips of the same generation 
(basidia and cystidia) and distinctly different developmental fates for branches of different ranks 
(basidia and paraphyses). 

 
mycelium, as suggested by Cohen24. Growth in this case is regulated by the absolute value of this field 
and is directed by its gradient (equivalent to negative autotropism). In two dimensional space turning 
up or down is not an option, so a tip approaching an existing hypha must go across the latter, moving 
against a large (possibly infinite, as the distance approaches zero) value of the density field. Cohen’s 
original model produced polarized tree-like structures, quite different from the typical spherical fungal 
colonies, and while the Indermitte et al. models29 succeeded in forming circular colonies, their analysis 
remained in two dimensions. Consequently, knowing how the circular colony arises on a flat plane is 
not enough; it is crucial to understand the formation of a spherical colony in three dimensional space. 

Our purpose here is to suggest a model, which we call the Neighbour-Sensing model, that, whilst 
being as simple as possible, is able to simulate formation of a spherical, uniformly dense fungal colony 
in a visualisation in three dimensional space. Following Indermitte et al.29 we gauge our success on the 
basis that our model successfully imitates the three branching strategies of fungal mycelia illustrated 
by Nils Fries in 194343. 
 
Verbal Description of the Neighbour-Sensing Model 

The process of simulation is defined as a closed loop. This loop is performed for each currently 
existing hyphal tip of the mycelium and the algorithm: 

1. Finds the number of neighbouring segments of mycelium (N). A segment is counted as 
neighbouring if it is closer than the given critical distance (R). In the simplest case we did not 
use the concept of the density field, preferring a more general formulation about the number of 
the neighbouring tips. 

 
2. If N<Nbranch (the given number of neighbours required to suppress branching), there is a certain 

given probability (Pbranch) that the tip will branch. If the generated random number (0..1) is less 
than this probability, the new branch is created and the branching angle takes a random value. 
The location of the new tip initially coincides with the current tip. This stochastic branch 
generation model is similar overall to earlier ones16, 25, 44 in which distance between branches and 
branching angles followed experimentally measured statistical distributions. This, however, was 



Branching Morphogenesis 

9 

not required to reach the desired shape of the colony in our model. Rather, we used a uniform 
distribution, as did Indermitte et al.29 

We assumed that all hyphal tips in mycelia grow at constant speed. This assumption was sufficient 
to get the desired shape and structure of the colony.  

In the simplest version, the growth direction is defined during branching and is not altered 
subsequently. In other words, the initial model does not implement tropic reactions (to test the kind of 
morphogenesis that might arise without this component).  Later versions of the model tested how 
implementation of the density field hypothesis would affect colony growth. The density field features 
were made analogous to an electrical field24.  

Implementation of a negative autotropic reaction requires the concept of the density field, as the 
growth must be directed by the gradient of this field. We also implemented the suggestion24 that the tip 
should change direction gradually (the so-called persistence factor; see Section 2.5). In our 
implementation, the growth speed remained constant and the density gradient alters only the growth 
direction. Otherwise, a high gradient, if formed accidentally, would cause unreliably fast growth in 
some parts of the mycelium. 

With low values of the persistence factor the model is able to form small linear structures. This is 
because, with such a parameter set, immediately after branching the hyphal density field tends to 
orient the new tip strictly in the opposite growth direction from the old tip. That is, the new hypha is 
directed to grow parallel with the old hypha but in the opposite direction. If we suppose that the 
hyphal density field is generated just by tips and branch points, this direction remains optimal until the 
tip goes sufficiently far from the branch point to start interacting with other hyphae. Changing 
parameters while the colony is still nearly linear can produce ellipsoidal or tubular structures. 

We have experimented with a variety of extensions of the model (see illustrations in Section 4.4, 
below): for example, growth being suppressed by a high number of neighbouring tips; or allowing the 
growing tip only to be active for a fixed time before it stops growing and branching. Such changes can 
result in more optimal packing of the hyphae, but are not required to form a spherical colony. Real 
fungal colonies are rarely uniform in structure, so the question arises whether any smaller new 
structures can form in a virtual colony growing in accordance with this model. We found that this 
could happen following abrupt changes of the model parameter set (especially R and Nbranch). 
 
Mathematical Description 

Let, at the time t∈Z+, the mycelium contain n growing hyphal tips. Let yi and gi be position and 
growth vectors, respectively, of the i-th growing hyphal tip at time t∈Z+. Let Y be a set, containing 
other points of the mycelium that are sensed as neighbouring tips and/or branch points. Now, let 
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where αt, βt and γt all form sequences of independent, uniformly distributed random variables over the 
range [0..1[. 

Now compute an array b, containing all the values of i that satisfy the condition Ni < Nbranch and δt < 
Pbranch. Here δt forms a sequence of independent, uniformly distributed values over the range [0..1[, 
and Pbranch is the model parameter. Let m be the length of this array. For each k∈[1..m], define: 
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Finally, define y′i = yi + agi, g′i = g i and n′ = n+m (the model parameter a determines the tip growth 
rate in length units per defined iteration period). Define Y′ = Y+∀yk:k∈b. Now we have y′, g′, n′ and 
Y′ defining the state of the colony after one iteration of the model algorithm. 

This basic algorithm can be extended by assuming that the tip can be active only for a fixed time 
(Smax iterations) and stops growing after its length reaches Lmax length units. Also, it could be assumed 
that the growth is suppressed if Ni >Ngrowth. To implement these extensions, let us define the age array 
S(S′i = Si+1, S′n+k = 0) and the length array L (L′i = L′i+a, L′n+k = 0). Then y′i must be re-defined as 
agiΦ(Si-Smax) Φ(Li-Lmax)Φ(Ngrowth-Ni) and the condition for the value, i, to join the array b must be 
extended to Si < Smax. In the density field version of the model, (6) must be replaced by (9): 
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Also, Nmax changes the biological meaning to the maximal value of the density field. 

Negative autotropism was implemented using Cohen’s approach24. In this case, vi should be replaced 
by: 
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where 
x
xxnorm =)( . 

Again, (6) must be replaced by (9). In (10), the parameter k is a model parameter, defining a 
particular coefficient of persistence, which is used to ensure that branches change direction gradually; 
and it operates on the previous growth vector gi. The derivatives are computed by numeric 
differentiation. The function norm(x) ensures that the density gradient alters the direction but not the 
speed of the growth. 
 
Implementation 

Both versions of the model were implemented in Java together with the simple visualiser: 
 

{ })cosαksinασ(kx,σky)UY(yk 10
screen
i2i +==∃∈∀ screen

i  
 
yi and Y being contained in a tree-like data structure. Interactive adjustment of ∈σ  [0..∞[, and ∈σ  [-
π..π] enabled experimental observation of the growing colony and visual appreciation of its shape. To 
permit examination of the internal structure of the colony, the application will display a slice of chosen 
thickness across the colony. This complete interactive application is available for personal 
experimentation at this URL: http://www.world-of-fungi.org/index.htm. 
 
Conclusions 

A random growth and branching model (i.e. one that does not include the local hyphal tip density 
field effect) is sufficient to form a spherical colony. The colony formed by such a model is more 
densely branched in the centre and sparser at the border; a feature observed in living mycelia (see 
Section 2.4). 

Models incorporating local hyphal tip density field to affect patterning produced the most regular 
spherical colonies. As with the random growth models, making branching sensitive to the number of 
neighbouring tips forms a colony in which a near uniformly dense, essentially spherical, core is 
surrounded by a thin layer of slightly less dense mycelia. Using the branching types discussed by 
Fries43 as our paradigm, the morphology of  virtual colonies produced when branching (but not growth 
vector)  
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Figures 4 - 9. Comparison of three different colony types described by Fries41 (Figs 4 - 6) with 
visualisations produced by the computer model (Figs 7 - 9); Figs 4 & 7 show the Boletus type, Figs 5 
& 8 the Amanita type, and Figs 6 & 9 the Tricholoma type. 

 
was made sensitive to the number of neighbouring tips was closest to the so-called Boletus type (Figs 
4 & 7). 

This suggests that the Boletus type branching strategy does not use tropic reactions to determine 
patterning, nor some pre-defined branching algorithm (of the sort suggested by Hogeweg & Hesper45). 
Following Occam’s rule that a simpler model must be preferred if it explains the experimental data 
equally well46, we conclude that hyphal tropisms are not always required to explain “circular” (= 
spherical) mycelia. 

When our model implements the negative autotropism of hyphae, a spherical, near uniformly dense 
colony is also formed, but branching is still regulated by the number of neighbouring tips (not by the 
density field). However the structure of such a colony is different from the previously mentioned 
Boletus type, being more similar to the Amanita rubescens type43, characterised by a certain degree of 
differentiation between hyphae (Figs 5 & 8). First rank hyphae tending to grow away from the centre 
of the colony; second rank hyphae growing less regularly, and filling the remaining space. In the early 
stages of development such a colony is more star-like than spherical. We wish to emphasise that this 
remarkable differentiation of hyphae emerges in the visualisation even though the program does not 
include routines implementing differences in hyphal behaviour. In the mathematical model all 
virtual hyphae are driven by the same algorithm. By altering the persistence factor, it is possible to 
generate the whole range of intermediate forms between Boletus and Amanita types. 

Finally, when both autotropic reaction and branching are regulated by the hyphal density field, a 
spherical, uniformly dense colony is also formed. However, the structure is different again, such a 
colony being similar to the Tricholoma type illustrated by Fries43(Figs 6 & 9). This type has the 
appearance of a dichotomous branching pattern, but it is not a true dichotomy. Rather the new branch, 
being very close, generates a strong density field that turns the older tip. In the previous model a tip 
nearby has no stronger effect than a more distant tip as long as they are both closer than R. 

Hence the Amanita rubescens and Tricholoma branching strategies may be based on a negative 
autotropic reaction of the growing hyphae while the Boletus strategy may be based on the absence of 
such a reaction, relying only on density-dependent branching. Differences between Amanita and 
Tricholoma in the way that the growing tip senses its neighbours may be obscured in life. In Amanita 
and  Boletus types, the tip  may sense the  number of  other tips  in  its immediate  surroundings. In the 
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Figures 10 - 15. Some of the colony types obtained by varying the parameters of the model. Fig. 10.  
Ellipsoid:  Run for 200 time units at a growth rate of 1 length unit per time unit, with negative 
autotropism implemented so that crossing tips are slowed to 10% of their original speed, and the 
density field hypothesis of branching regulation applied, where the density field threshold for 
branching is set at 0.1 and branching probability at 80% per time unit. Fig. 11.  Mycelium with 
exploratory filaments:  Stage 1:  Run for 100 time units at a growth rate of 1 length unit per time unit, 
with negative autotropism implemented so that crossing tips are slowed to 10% of their original 
speed, and the density field hypothesis of branching regulation applied, where the density field 
threshold for branching is set at 0.06 and branching probability at 40% per time unit (Tricholomas 
parameter set).  Stage 2:  Run for 100 time units at a growth rate of 1 length unit per time unit, with 
negative autotropism implemented so that crossing tips are slowed to 10% of their original speed, and 
branching and growth limited to localities where there are less than 8 and 15 neighbouring tips, 
respectively, in a radius of 20 length units around the growing tip, and branching occurring with a 
probability of 80% per time unit.  Furthermore, growth and branching of tips are each stopped when 
the tips reach an age of 10 time units. Fig. 12.  Spider:  Stage 1:  Run for 200 time units at a growth 
rate of 1 length unit per time unit, with negative autotropism implemented so that crossing tips are 
slowed to 10% of their original speed, and the density field hypothesis of branching regulation 
applied, where the density field threshold for branching is set at 0.1 and branching probability at 80% 
per time unit.  Stage 2:  Run for 100 time units at a growth rate of 1 length unit per time unit, with 
negative autotropism implemented so that crossing tips are slowed to 10% of their original speed, and 
branching and growth limited to localities where there are less than 50 and 80 neighbouring tips, 
respectively, in a radius of 50 length units around the growing tip, and branching occurring with a 
probability of 80% per time unit.  Furthermore, growth and branching of tips are each stopped when 
the tips reach an age of 20 time units. Fig. 13.  Parent and daughter mycelia:  Stage 1:  Run for 200 
time units at a growth rate of 1 length unit per time unit, with negative autotropism implemented so 
that crossing tips are slowed to 10% of their original speed, and the density field hypothesis of 
branching regulation applied, where the density field threshold for branching is set at 0.06 and 
branching probability at 40% per time unit (Tricholomas parameter set).  Stage 2:  Run for 100 time 
units at a growth rate of 1 length unit per time unit, with negative autotropism implemented so that 
crossing tips are slowed to 10% of their original speed, and growth limited to localities where there 
are less than 135 neighbouring tips in a radius of 100 length units around the growing tip, and 
branching occurring  with a  probability of 0.1%  per  time unit.  Stage 3:  Run for 100 time units at a 

Figure legend continued on next page
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growth rate of 0.5 length unit per time unit, with negative autotropism implemented so that crossing 
tips are slowed to 10% of their original speed, and branching and growth limited to localities where 
there are less than 100 and 150 neighbouring tips, respectively, in a radius of 100 length units around 
the growing tip, and branching occurring with a probability of 80% per time unit.  Fig. 14.  
Doughnut:  Stage 1:  Run for 90 time units at a growth rate of 1 length unit per time unit, with 
negative autotropism implemented so that crossing tips are slowed to 0% of their original speed, and 
the density field hypothesis of branching regulation applied, where the density field threshold for 
branching is set at 0.1 and branching probability at 80% per time unit.  Stage 2:  Run for 110 time 
units at a growth rate of 1 length unit per time unit, with negative autotropism implemented so that 
crossing tips are slowed to 0% of their original speed, and the density field hypothesis of branching 
regulation applied, where the density field threshold for branching is set at 0.005 and branching 
probability at 20% per time unit.  Furthermore, branching is stopped when the tips reach an age of 50 
time units.  Stage 3:  Run for 30 time units at a growth rate of 1 length unit per time unit, with 
negative autotropism implemented so that crossing tips are slowed to 0% of their original speed, and 
the density field hypothesis of branching regulation applied, where the density field threshold for 
branching is set at 0.5 and branching probability at 80% per time unit.  Furthermore, growth is 
stopped when the tips reach an age of 25 time units. Fig. 15.  Rod:  Run for 1000 time units at a 
growth rate of 1 length unit per time unit, with negative autotropism implemented so that crossing 
tips are slowed to 0% of their original speed, and the density field hypothesis of branching regulation 
applied, where the density field threshold for branching is set at 0.005 and branching probability at 
80% per time unit. 

 
Tricholoma type, the tip may sense all other parts of the mycelium, but the local segments have the 
greatest impact. 

Our models show that the broadly different types of branching observed in the fungal mycelium are 
likely to be based on differential expression of relatively simple control mechanisms. We presume that 
the “rules” governing branch patterning (that is, the mechanisms causing the patterning) are likely to 
change in the life of a mycelium, as both intracellular and extracellular conditions alter. We have 
imitated some of these changes by making alterations to particular model parameters during the course 
of a simulation. Some of the results are illustrated in Figures 10 – 15, and they show that the 
Neighbour-Sensing model is capable of generating a range of morphologies in its virtual mycelia 
which are reminiscent of fungal tissues. These experiments make it evident that it is not necessary to 
impose complex spatial controls over development of the mycelium to achieve particular geometrical 
forms. Rather, geometrical form of the mycelium emerges as a consequence of the operation of 
specific locally-effective hyphal tip interactions. We hope that further experimentation with the model 
will enable us to predict how tissue branching patterns are established in real life. 
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