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Abstract: Chytridiomycota (chytrids) is the only
phylum of true Fungi that reproduces with motile
spores (zoospores). Chytrids currently are classified
into five orders based on habitat, zoospore characters
and life cycles. In this paper we estimate the
phylogeny of the chytrids with DNA sequences from
the ribosomal RNA operon (185+5.85+28S subunits).
To our surprise the morphologically reduced para-
sites Olpidium and Rozella comprise two entirely new,
and separate, lineages on the fungal tree. Olpidium
brassicae groups among the Zygomycota, and Rozella
spp. are the earliest branch to diverge in the fungal
kingdom. The phylogeny also suggests that Chytri-
diomycota is not monophyletic and there are four
major lineages of chytrids: Rozella spp., Olpidium
brassicae, the Blastocladiales and a ‘“‘core chytrid
clade” containing the remaining orders and families
and the majority of flagellated fungi. Within the core
chytrid group 11 subclades can be identified, each of
which correlates well with zoospore ultrastructure or
morphology. We provide a synopsis of each clade and
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its morphological circumscription. The Blastocla-
diales appears to be the sister taxon of most
nonflagellated fungi. Based on molecular phyloge-
netic and ultrastructural characters this order is
elevated to a phylum, the Blastocladiomycota.

Key words: Blastocladiomycota, Chytridiales,
holocarpic, kinetosome, phylogeny, zoospore
ultrastructure

INTRODUCTION

The Chytridiomycota is a phylum of Fungi that
reproduces through the production of motile spores
(zoospores), typically propelled by a single, poster-
iorly directed flagellum. These organisms, often
referred to as chytrid fungi or chytrids, have a global
distribution with approximately 1000 described spe-
cies. Based on biochemical characteristics, including
chitin in cell walls, the o-aminoadipic acid lysine
synthetic pathway and storage carbohydrates as
glycogen, Bartnicki-Garcia (1970) classified the Chy-
tridiomycota as true Fungi. Others considered chy-
trids as a transitional group between protists and
Fungi because of their production of motile zoo-
spores (Barr 1990). Phylogenetic studies with ribo-
somal RNA genes unified these views and conclusively
demonstrated that chytrids were true Fungi that
occupied a basal position in the fungal tree (e.g.
Forster et al 1990).

Chytrids are essentially ubiquitous, occurring in
diverse and unique habitats from the tropics to the
arctic regions (Powell 1993). They are found in
aquatic systems such as streams, ponds, and estuarine
and marine ecosystems primarily as parasites of algae
and plankton components. Perhaps the majority of
chytrid species occur in terrestrial habitats (Barr
2001) such as forest, agricultural and desert soils,
and acidic bogs as saprotrophs of refractory substrata
including pollen, chitin, keratin and cellulose. In soil
chytrids are obligate parasites of a wide variety of
vascular plants, including potatoes (Synchytrium) and
curcurbits (Olpidium). The only known chytrid
parasite of vertebrates is Batrachochytrium dendrobati-
dis (Longcore et al 1999), considered the causative
agent of die-offs and population declines of amphib-
ian species (Berger et al 1998). In most habitats a few
chytrid species are relatively frequent and abundant
(i.e. Chytriomyces hyalinus in freshwater and Rhizoph-
lyctis rosea in agricultural and perturbed soils),
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whereas most species are infrequent and scarce to
rare (Letcher and Powell 2001, Letcher et al 2004a).

The most prominent morphological feature of the
chytrid body, or thallus, is the sporangium (FIG. 1).
The sporangium is a sac-like structure in which
internal divisions of the protoplasm result in pro-
duction of zoospores. These zoospore-producing
sporangia (zoosporangia) are thin-walled (FIG. 1k)
whereas resting spores are thick-walled structures
(F1G. 1a, 1) that may germinate to produce a sporan-
gium after a dormant period. Zoosporangia always are
produced asexually, but resting spores may be
sexually or asexually formed. Eucarpic chytrids are
those that consist of a sporangium and filamentous
rhizoids (FIG. 1k). In contrast holocarpic chytrids
produce thalli that are entirely converted to sporangia
during reproduction. Chytrid thalli can be either
monocentric, in which an individual produces only
a single sporangium (FIG. 1g), or polycentric, in
which an individual is composed of multiple sporan-
gia produced on a network of rhizoids termed
a rhizomycelium (FIG. 1j). Classically chytrids also
were described on the basis of whether they grow on
(epibiotic, FIG. 1h) or within (endobiotic, FIG. 1a)
their substrate. Other characteristics historically used
for taxonomy include the presence of a lid-like
operculum (FIG. le), which opens to allow zoospore
release from a sporangium (Sparrow 1960), and the
apophysis (FIG. 1i), which is a subsporangial swelling.

Zoospores are unwalled cells, usually 2-10 pum
diam, which contain a single nucleus and, with the
exception of some genera of the Neocallimastigales,
are propelled by a single posteriorly oriented whip-
lash flagellum (FIG. 1b, m). Considerable effort has
been placed on understanding the ultrastructure of
the zoospore with electron microscopy; these studies
have produced a wealth of information about the
complexity of the internal contents of the spores. Two
character-rich components of the zoospores can be
identified: the flagellar apparatus, basal bodies and
associated structures (Barr 1981), and the microbody-
lipid globule complex (MLC, Powell 1978).

The Chytridiomycota is divided into five orders
based primarily on the mode of reproduction and
ultrastructure of the zoospore. Three groups can be
distinguished largely on the basis of life cycle and
gross morphology: the oogamous Monoblepharidales;
the Blastocladiales displaying sporic meiosis and the
alternation of sporophytic and gametophytic genera-
tions; and the Chytridiales, a group characterized by
zygotic meiosis. A fourth order, Spizellomycetales, was
separated from the Chytridiales on the basis of
distinctive ultrastructural character states (Barr
1980), and a fifth order, Neocallimastigales, occurs
exclusively as anaerobic symbionts of the rumen.

Chytridiales is the largest of the orders (more than 75
genera) and the classification of this group has been
variously approached using developmental, sporan-
gial and more recently ultrastructural characters.
Sparrow (1960) considered the operculum to be
a defining characteristic and created two series of
families based on whether sporangia were operculate.
In contrast Whiffen (1944), Roane and Paterson
(1974) and Barr (1978) suggested development could
be used to divide the Chytridiales into families.
Systems of classification based on morphology and
those based on development of the thallus and
sporangium both have been shown by molecular
phylogenetics to be inaccurate in defining genera and
families of Chytridiales (James et al 2000, Letcher et al
2004b).

Molecular phylogenies with 18S rDNA have sug-
gested that both the Chytridiomycota and Chytri-
diales might not be monophyletic (James et al 2000).
Phylogenies based on data from entire mitochondrial
genomes (Seif et al 2005) have suggested strongly that
two main lineages exist within the Chytridiomycota—
the Blastocladiales and the remaining four orders
(the *“‘core chytrid clade’’). In this paper we present
a new dataset that includes an analysis of most chytrid
18S rDNA data in conjunction with sequence data for
the entire TRNA operon (18S, 28S and 5.8S). These
data provide a comprehensive view of chytrid phylog-
eny and define four major lineages of flagellated
Fungi.

MATERIALS AND METHODS

Our dataset consists of taxa for which most of the rRNA
operon was sequenced (185+285+5.8S subunits, n = 54) as
well as chytrid taxa represented only by 18S data (n = 49)
and additional fungal, animal and Mesomycetozoae taxa (n
= 21; complete operon with one exception, Diaphanoeca
grandis). GenBank accession numbers and strain/voucher
data are provided (SUPPLEMENTARY TABLE I). Data gathered
for the full operon were obtained by PCR, primarily with
primers SRIR and LRI12 (Vilgalys and Hester 1990) using
LATaq (TaKaRa), with these thermocycling conditions:
94 C for 1 min followed by 35 cycles of denaturing at 94 C
for 30 s, annealing at 55 C for 30 s, extension at 72 C for
5 min and a 10 min final extension at 72 C. Amplicons
generally were cloned into pCR2.1-TOPO (Invitrogen).
The three gene regions were aligned by eye with GeneDoc
v2.6 (http://www.cris.com/~Ketchup/genedoc.shtml) and
combined into one supermatrix with MacClade 4.05 (Maddi-
son and Maddison 2002). Regions of ambiguous alignment
were excluded from further analysis leaving 4109 included
characters, 1388 of which are parsimony informative. We
estimated the phylogeny with MrBayes v3.1 (Huelsenbeck
and Ronquist 2001) by four independent runs with the
GTR+I+I" model of evolution, sampling trees every 500
generations for 10 X 10° generations. We also assessed
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FiG. 1. Light micrographs of representative chytrids. a. Rozella allomycis isolate UCB-47-54 (Clade 1) parasitizing hyphae of
Allomyces. The parasite grows inside the host and causes it to produce hypertrophied, highly septate cells within which the
parasite may form thick-walled resting spores (RS) or unwalled zoosporangia (ZS) that use the host’s cell wall as its own. b.
Neocallimastix sp. (Clade 2A) monocentric thallus with profusely branched rhizoids, inset: multiflagellate zoospores (by Gary
Easton). c. Monoblepharis polymorpha (Clade 2B) mature zygote or oospore (OS), empty and mature antheridia (AN) and
antherozoids (AT) or male gametes emerging from antheridium; photo by Marilyn M. N. Mollicone. d. Polychytrium
aggregatum isolate JEL109 (Clade 2C) finely branched rhizomycelium. e. Catenochytridium sp. (Clade 2D) monocentric,
operculate (OP) zoosporangium with catenulate rhizoids (RH). f. Chytriomyces angularis isolate JEL45 (Clade 2F)
monocentric, operculate sporangium with thread-like rhizoids that branch several um from the sporangial base (arrow). g.
Terramyces subangulosum isolate PL 076 (Clade 2G) monocentric, inoperculate sporangium with a thick rhizoidal axis, and
densely branched rhizoids (RH) that taper to ~0.5 pwm at tips. h. Blyttiomyces helicus (Clade 2H) forming epibiotic,
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support for nodes with parsimony bootstrap as imple-
mented in PAUP v4.0b10 (Swofford 2002) and maximum
likelihood bootstrap as implemented in RAXML-VI-HPC
v2.0 (Stamatakis et al 2005).

RESULTS AND DISCUSSION

The phylogeny (FIG. 2) is the consensus of credible
trees derived from the Bayesian analysis of rDNA
genes from Chytridiomycota. These analyses confirm
the basal position of this group among the Fungi and
provide support for at least four major clades of
Chytridiomycota. Clade 1 is the earliest diverging
lineage in the Fungi and comprises Rozella spp. The
largest, Clade 2 or the ‘‘core chytrid clade,”
comprises Chytridiales, Spizellomycetales pro parte,
Monoblepharidales and Neocallimastigales and can
be subdivided further into 11 clades (clades 2A-2K).
Clade 3 represents the Blastocladiales, grouping sister
of the Dikaryat+Glomeromycota+Zygomycota, and
Clade 4 is represented solely by Olpidium brassicae,
which groups among the Zygomycota. These results
further suggest that Chytridiomycota is polyphyletic
or at least paraphyletic. As suggested by a phylogenetic
study of Opisthokonts, the amoeba Nuclearia simplex
appears to be the closest known sister taxon of the
Fungi (Steenkamp et al 2005). Below we discuss the
membership of each clade, providing a brief state-
ment on the systematics of each group in light of our
phylogenetic findings.

Clade 1. Rozella.—Two isolates of Rozella are
supported strongly as the earliest diverging lineage
in the fungi. Rozella is a holocarpic parasite, primarily
of chytrids and Oomycetes, that grows inside its host
as a walless trophic form (Held 1981) until it
produces thick-walled resting spores or zoosporangia
that fill the host cell (FIG. 1a). The two strains in the
rDNA phylogeny are parasites on other chytrids
(Allomyces and Rhizoclosmatium). The ultrastructure
of R. allomycis zoospores presents a unique combina-
tion of characters including a striated rhizoplast
connecting the kinetosome (the basal body of the
flagellum) to a large, spheroidal mitochondrion,
which abuts a helmetshaped nucleus (Held 1975).
Phylogenetic analyses using the two largest subunits

of RNA polymerase II suggest that microsporidia
might belong to this lineage (T.Y. James and R.
Vilgalys, unpublished data).

Clade 2A. Neocallimastigales.—It is supported as the
most basal group of the core chytrid clade (Clade 2)
by Bayesian posterior probability. Members of this
clade are characterized by obligate anaerobic growth
and are found in the rumen and hindgut of many
larger mammalian herbivores. They are morpholog-
ically similar to other chytrid orders and may be
monocentric or polycentric. The rumen chytrids
possess an organelle called a hydrogenosome that
generates ATP and appears to be a degenerate
mitochondrion lacking a genome (van der Giezen
2002). Rumen chytrid zoospores may be multiflagel-
late or uniflagellate (FIG. 1b). The zoospore of rumen
chytrids lacks the nonflagellated centrioles (nfc) and
lipid globules that are found in most other members
of Clade 2 but possesses a microtubulular root
emanating from a kinetosome associated spur (Heath
et al 1983). Six described genera are circumscribed
on the basis of number of flagella and sporangial
characters (Ho and Barr 1995, Ozkose et al 2001).

Clade 2B. Monoblepharidales.—It is monophyletic and
sister of the clade of Chytridiales+Spizellomycetales.
Monoblepharidales is a small order consisting only of
six genera. The earliest diverging lineage is the
species Hyaloraphidium curvatum, once believed to
be a colorless, unicellular green alga (Ustinova et al
2000). The planktonic H. curvatum has a lunate
thallus superficially similar to that of some Harpochy-
trium species, but zoospores have not been observed
in H. curvatum. The genera Oedogoniomyces, Hyalor-
aphidium and Harpochytrium all grow vegetatively as
simple, unbranched thalli lacking rhizoids, whereas
the remaining three genera, Gonapodya, Monoble-
pharis and Monoblepharella, are polycentric species
with a well developed coenocytic mycelium. In poly-
centric genera oogamous reproduction occurs in
which a motile male gamete (antherozoid) fuses with
a nonmotile female gamete (egg, FIG. 1c). Hyphae of
Monoblepharidales have a foamy or reticulate ap-
pearance. Zoospores of Monoblepharidales have
a fenestrated cisterna called a rumposome (Fuller

«—

inoperculate sporangium with distinct helical pattern on pollen grain. i. Spizellomyces plurigibbosus isolate SW 001 (Clade 2I)
monocentric, inoperculate zoosporangium (ZS), with swollen, apophysate rhizoidal axis (AP) and branched rhizoids that are
blunt at the tips. j. Catenomyces persicinus (Clade 2]) polycentric thallus with intercalary zoosporangia. k. Chytriomyces hyalinus
isolate MP 004 (Clade 2K) monocentric, operculate zoosporangium (ZS) with long branched rhizoids that taper to < 0.5 pm
at the tips. 1. Coelomomyces stegomyiae (Clade 3) elliptical resting spores inside the anal gills of mosquito host. m. Olpidium
bornovanus (Clade 4) zoospores labeled with a FITC/Conconavalin A conjugate; photo by D’Ann Rochon. Approximate sizes
relative to scale bar in FIG. 1a = 10 um (e, g, h), 15 um (a, i, m), 20 um (b, f), 25 pm (c, k), 45 um (d), 50 pm (j), and 150

um (1).
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1966) and most have an electron opaque core in the
transitional zone of the axoneme similar to the one
found in some members of the Chytridiales.

Clade 2C. Chytridiales.—Polychytrium clade. The two
monotypic, polycentric genera Polychytrium and La-
custromyces and several monocentric species of Karlin-
giomyces make up the Polychytrium clade (formerly
termed the Lacustromyces clade, James et al 2000).
Polychytrium and Lacustromyces possess a rhizomyce-
lium that lacks swellings containing nuclei (FiG. 1d).
Polychytrium aggregatum is found in acidic lakes and
bogs; Lacustromyces hiemalis occurs in lakes or
commonly wet areas and Karlingiomyces can be
isolated from aquatic or terrestrial habitats. Both the
monocentric and polycentric species of this clade grow
on chitin baits. Zoospores are spherical when in
motion and usually larger than 4 wm diam. The
unique ultrastructural feature of the clade is the
composition of the kinetosome and its associated
structures (Longcore 1993 unpublished). The nfc is as
long as the kinetosome and the connection of the nfc
to the kinetosome is distinctive. Densely staining
material extends about 0.1 um into the zoospore from
kinetosome triplets 1 and 9; the primary microtubule
root arises between these extensions. At the same level
within the kinetosome is a scalloped ring (Longcore
1993).

Clade 2D. Chytridiales.—Cladochytrium. This clade
(formerly Nowakowskiella) (James et al 2000) is a well
supported lineage with a zoospore ultrastructure
similar to Nowakowskiella elegans and Cladochytrium
replicatum (Lucarotti 1981). It includes eight genera:
Allochytridium, Catenochytridium, Chytridium (?) pro
parte, Cladochytrium, Endochytrium, Nephrochytrium,
Nowakowskiella and  Septochytrium. Species in this
group may be monocentric or polycentric and often
are characterized by the presence of swellings in the
rhizoids or rhizomycelium (FIG. 1e). They occur
primarily on cellulose-rich substrates in aquatic and
soil habitats. Members of the Cladochytrium clade have
a zoospore that is typical for Chytridiales and most
similar to that of the Chytriomyces clade (2K). One
distinctive feature of the zoospore is that the micro-
tubular root arising from the kinetosome is a cord-like
bundle interconnected by fine fibrillar bridges (Lucar-
otti 1981, Barr 1986). Two major subclades were
recovered in our phylogenetic analysis. Nephrochytrium
and Cladochytrium form a clade that is sister of a clade
containing the remaining genera.

Clade 2E. Chytridiales.—Synchytrium. This genus
contains more than 200 species that are obligate
parasites of green plants, particularly angiosperms.
The four species of Synchytrium are monophyletic in
the rDNA phylogeny (FIG. 2). The distinguishing
feature of Synchytriumis colonial asexual reproduction
by a sorus, a cluster of sporangia. The sorus of
Synchytrium is derived by the internal cleavage of the
common membrane of a single thallus into multiple
sporangia. Synchytrium is included among Chytri-
diales, and the zoospore ultrastructure of two of the
species generally conforms to the chytridialean type
(Lange and Olson 1978, Montecillo et al 1980). The S.
endobioticum (Lange and Olson 1978) zoospore con-
tains an electron opaque plug at the base of the
flagellum but lacks a fenestrated cisterna; in contrast
the S. macrosporum zoospore has a fenestrated cisterna
but lacks the electron opaque plug (Montecillo et al
1980). Both species lack aggregated ribosomes ob-
served in most other Chytridiales. Synchyirium spp.
host ranges vary from broad (Karling 1964, S.
macrosporum can be inoculated onto 165 different
plant families) to narrow (S. decipiens is restricted to
the genus Amphicarpaea).

Clade 2F. Chytridiales.—C. angularis. Chytriomyces
angularis is a monocentric, epibiotic, operculate
fungus distinguished by a gibbous zoosporangium
with thread-like rhizoids (FIG. 1f). Secondary rhizoids
usually form several micrometers from the sporangial
base and branch perpendicularly from the initial
rhizoidal axis (FiG. 1f). In the literature fungi with
this description were considered possibly to be an
alternate form of C. poculatus. These fungi are
recovered on pollen and snakeskin baits from soils
or boggy areas and seem to be more abundant in
acidic environments. This clade also includes Chytri-
dium polysiphoniae, a parasite of the marine brown alga
Pylaiella littoralis. Although C. angularis was classified
as a member of Chytriomyces based on its morphology
and development, its zoospore (Longcore 1992) lacks
features found in the Chytridiaceae (Letcher et al
2005); instead it is characterized by a unique connec-
tion of the kinetosome and nfc (Longcore 1992).

Clade 2G. Chytridiales.—Rhizophydium. This clade
is composed primarily of members of the morpho-
genus Rhizophydium, which is characterized by a mono-
centric, epibiotic, inoperculate sporangium, an endo-
biotic rhizoidal axis that branches (FIG. 1g) and an
epibiotic resting spore. Molecular studies with 28S

«—

the kinetosome, nonflagellated centriole and associated structures. ““N’’ indicates nucleus; ‘M’ indicates mitochondrion.
Ultrastructures are indicated for all clades except 2H (B. helicus) for which information is not available.
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rDNA indicate that the genus Rhizophydium is more
variable than previously understood and actually
represents multiple genera (Letcher and Powell
2005b). The genus Kappamyces was circumscribed on
the bases of molecular monophyly and zoospore
ultrastructure (Letcher and Powell 2005b). Species
showing none of the usual Rhizophydium generic
characters also are in this clade (FIG. 2), including
endobiotic species (Batrachochytrium dendrobatidis and
Entophlyctis helioformis), species with multiple rhizoidal
axes (JEL142), species with swollen basal rhizoids (e.g.
Rhizophydium brooksianum) and operculate species
(e.g. JEL223).

Although thallus morphology among most mem-
bers of the Rhizophydium clade is relatively conserved,
zoospore ultrastructure is divergent. A key feature of
the zoospore is the absence of an electron opaque
plug in the base of the flagellum, which distinguishes
it from most members of the Chytridiales (Letcher et
al 2006). Other zoospore ultrastructural features that
may be present include a Kkinetosome-associated
structure (KAS) as a spur or shield (Letcher et al
2004b), a microtubular root in which four to five
microtubules are stacked and a vesiculated, cup-
shaped, invaginated region of the endoplasmic re-
ticulum that surrounds the ribosomal aggregation,
adjacent to the proximal end of the kinetosome.
Character states of zoospore ultrastructural features
are correlated with well supported clades of isolates
within the Rhizophydium clade. The diversity of the
Rhizophydium clade, as revealed by 18S, 28S, and
ITS1-5.8S-ITS2 rDNA molecular analyses and zoo-
spore ultrastructural analyses (Letcher et al 2004b),
support naming the clade a new order Rhizophy-
diales, which contains many families and genera
(Letcher et al 2006).

Clade 2H. Chytridiales.—Blyttiomyces helicus. This
is a distinctive species that has a sporangium traversed
by spiral thickenings. It grows saprotrophically on
pollen (F1G. 1h) but has not been isolated into pure
culture (J.E. Longcore unpublished). The rDNA
sequencing for the species was from an enriched
unifungal culture on pollen. The placement of B.
helicus in our analysis is uncertain, but additional data
suggest a grouping with Catenomyces persicinus (see
Clade 2]. Spizellomycetales—Rhizophlyctis clade, below,
T.Y. James unpublished).

Clade 2I. Spizellomycetales.—Spizellomyces. This is
a well supported lineage that appears to have diverged
from among the lineages of Chytridiales. The clade
contains the majority of the genera in the Spizellomy-
cetales: Gaertneriomyces, Kochiomyces, Powellomyces,
Spizellomyces and Triparticalcar. Most members of this
clade are saprophytic in soil. All these genera have

counterparts in the Chytridiales with similar morphol-
ogy and development (e.g. Spizellomyces has Phlyctochy-
trium morphology and development [FIG. 1i] but each
possesses the distinctive Spizellomycetalean zoospore).
At the ultrastructural level the nucleus is spatially or
structurally associated with the kinetosome, the nfc lies
at an angle to the kinetosome, organelles of the MLC
are loosely associated and ribosomes are not aggregat-
ed around the nucleus (Barr 1980). Under a light
microscope spizellomycetalean zoospores are recogniz-
able because they can be amoeboid while swimming,
are irregularly shaped and the flagellar insertion may
move to a lateral position. The rDNA phylogeny
(F1G. 2) suggests two groupings within this clade, one
in which the nucleus possesses a heel that extends to
the kinetosome (Powellomyces and Spizellomyces) and
another in which this character is absent (Gaertner-
tomyces and Triparticalcar).

Clade 2. Spizellomycetales.—Rhizophlyctis clade. This
group is a heterogenous assemblage of five strains that
is not well supported as a clade but possesses some
morphological similarities. Rhizophlyctis is a diverse
and polyphyletic group based on zoospore ultrastruc-
ture (Barr and Désaulniers 1986) and 18S rDNA
phylogeny (James et al 2000). In Rhizophlyctis rosea the
kinetosome is connected to the nucleus with a striated
rhizoplast (Barr and Désaulniers 1986). The R. rosea
zoospore shares similarities with other members of the
Spizellomycetales, and Barr (1980) placed Rhizophlyctis
with Entophlyctis, Olpidium and Rozella in Spizellomy-
cetales based on the shared characters of association of
the nucleus with the basal body and dispersed
ribosomes. The Rhizophlyctis clade groups with the
Spizellomyces clade (2I), albeit with no statistical
support. The genera Rozella and Olpidium, which also
have a striated rhizoplast associated with their kineto-
somes, are unrelated to the Rhizophlyctis clade, in-
dicating that this feature is homoplasious. Catenomyces
persicinus, currently assigned to the Blastocladiales, is
in this clade (FIG. 1j). It resembles R. rosea and also
degrades cellulose; however, rather than being a soil
organism like R. rosea, we have found it from aquatic
habitats.

Clade 2K. Chytridiales.—Chytriomyces. It is com-
posed of members of 13 studied genera (Asterophlyctas,
Chytridium, Chytriomyces, Entophlyctis, Obelidium,
Phlyctochytrium, Phlyctorhiza, Physocladia, Podochy-
trium, Polyphlyctis, Rhizidium, Rhizoclosmatium and
Siphonaria). These genera exhibit diverse thallus
forms that include inoperculate or operculate sporan-
gia (FIG. 1k), often apophysate rhizoidal axes, varia-
tion in sporangial ornamentation and monocentric or
polycentric thalli. Because of this morphological
diversity many species are identifiable with light
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microscopy. Species identified as being in the genus
Chytriomyces occur in several separate, well supported
clades indicating that Chytriomyces as currently defined
is polyphyletic (FIG. 2).

Although thallus morphology is divergent zoospore
ultrastructure is conserved among the members of
this clade. Most isolates from the Chytriomyces clade
possess a Group I-type zoospore (Barr 1980) and form
a clade that has been delineated as the Chytridiaceae
(Letcher et al 2005). Features of that zoospore
include a fenestrated cisterna, a lateral microtubular
root composed of a bundle of approximately seven
microtubules in a cord-like arrangement, and a pair
of three stacked, flat, electron opaque plates adjacent
to the kinetosome, a paracrystalline inclusion in the
peripheral cytoplasm and an electron opaque plug in
the base of the flagellum. Phlyctochytrium planicorne
(Letcher and Powell 2005a) and Polyphlyctis unispina
(Letcher et al 2005) have a Group Il-type zoospore
(Barr 1980), distinguishable from the zoospore of the
Chytridiaceae primarily by the structure of the
electron opaque plates adjacent to the kinetosome.
Isolates with a Group Il-type zoospore probably
represent a separate family in the Chytridiales.

Clade 3. Blastocladiomycota.—Traditionally consid-
ered among phylum Chytridiomycota, the Blastocla-
diales diverges from the core chytrid clade and is
sister of a clade including Zygomycota, the chytrid
genus Olpidium, Glomeromycota and Dikarya
(F1G. 2). They are saprotrophs as well as parasites of
fungi, algae, plants and invertebrates, and may be
facultatively anerobic. Two major subclades are re-
solved in molecular phylogenetic analyses (FIG. 2),
one composed of the plant parasite Physoderma and
the other containing the remaining blastocladialean
genera. The morphology of thalli of Blastocladiales
parallels forms found among the core chytrid clade,
ranging from monocentric to polycentric and myce-
lial. However Coelomomyces produces a tubular un-
walled thallus in its host, reminiscent of hyphal bodies
in the Zygomycete group Entomophthorales. The
zoospore is functionally similar to those found among
core chytrids with a single posteriorly directed
flagellum, stored lipid and glycogen reserves, a char-
acteristic assemblage of lipids, microbodies, mem-
brane cisterna called the side-body complex (=micro-
body-lipid globule complex) and a membrane-
bounded ribosomal cap covering the anterior surface
of a cone-shaped nucleus.

Major evolutionary changes have accompanied the
divergence of the Blastocladiales from the core
chytrids. For example the Blastocladiales have a life
cycle with sporic meiosis whereas most core chytrids
have zygotic meiosis, where known. The Blastocla-

Fic. 3. Comparison of ultrastructural differences be-
tween the Blastocladiales and core chytrids. a. Longitudinal
section through the closed mitotic pole of Catenaria
allomycis with centriole (arrowed) separated from the
internuclear spindle (Blastocladiales). b. Open mitotic pole
of Powellomyces variabilis (Spizellomyces clade) with the
centriole (arrowed) proximate to the mitotic spindle. c.
Unstacked, single cisterna of a Golgi equivalent (arrowed)
in Allomyces arbusculus (Blastocladiales) near rough endo-
plasmic reticulum. d. A Golgi apparatus with five stacked
cisternae in Powellomyces variabilis (Spizellomyces clade).
Notice smooth endoplasmic reticulum and small transport
vesicles at the proximal (upper) side of the stacks and larger
secretory vesicles at the distal (lower) side of the stack.
Methods for sample preparation and microscopy are as
previously published (Powell 1975). Bars: a, b = 0.25 um; c,
d = 0.125 pm.

diales exhibits several ultrastructural features more
characteristic of higher filamentous fungi than of the
core chytrids, including closed nuclear poles during
mitosis (FIG. 3a) rather than open (fenestrate) poles
(F1G. 3b) and Golgi equivalents (Bracker 1967,
FIG. 3c) rather than stacked Golgi cisternae (FIG. 3d).
A Golgi apparatus with stacked cisternae has been
reported in Physoderma (Lange and Olson 1980),
suggesting this subclade might have diverged before
the loss of Golgi cisternal stacking in the Blastocla-
diales. These distinctive ultrastructural characteristics
as well as the phylogenetic placement of the group
warrant their elevation to a new phylum, the
Blastocladiomycota.

Blastocladiomycota T. James, phylum nov.

Synonyms: Allomycota Cavalier-Smith, BioSystems
14:465, 1981 (not valid, no Latin diagnosis)
Archemycota Cavalier-Smith, Biol. Rev. 73:246,

1998 pro parta
Zoosporum cum flagellum unum, corpus-latus
complexe, nucleus pileus ex ribosomata membrane
confinium, nucleus cum conus forma terminari
propinquus kinetosoma, microtubuli ex propinqui-
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tate kinetosomatis per zoosporum radiant circum
nucleus, flagellum obturamentum nullum. Generare
nonsexus cum zoosporae, generare sexus ad conjiun-
gare planogametum, orbis vita cum meiosis sporae.

Typus: Blastocladia Reinsch 1878

Zoospore with a single flagellum, side-body com-
plex, nuclear cap of membrane-bounded ribosomes,
cone-shaped nucleus that terminates near the kinet-
osome, microtubules radiate anteriorly from the
proximal end of the kinetosome around the nucleus,
zoospore flagellum lacks electron-opaque plug in
transition zone. Asexual reproduction with zoospores,
sexual reproduction through fusion of planogametes,
life cycle with sporic meiosis.

Type: Blastocladia Reinsch 1878

Blastocladiomycetes cl. nov. T. James. Description as
for Blastocladiomycota.

Reinsch described Blastocladia in 1878, and Peter-
sen (1910) erected the family Blastocladiaceae to
accommodate this single genus, classifying it in the
class Oomycetes. Kanouse (1927) first used the order
name, Blastocladiales (which she credited to Peter-
sen), and included in it the single family with
Allomyces and Gonapodya (now removed). Fitzpatrick
(1930) placed the Blastocladiales in class Phycomy-
cetes, a classification Sparrow (1960) followed. Alex-
opoulos (1966) separated fungi into eight classes, one
of which was class Chytridiomycetes, including Blas-
tocladiales. This placement for the Blastocladiales was
retained as Chytridiomycetes was elevated to the
phylum Chytridiomycota (not validly published, no
Latin diagnosis; p 15 in von Arx 1967, Margulis et al
1990). Chytridiomycota will be validated when the
phylogeny is more clearly resolved.

Although Tehler (1988) used Blastocladiomycota
as a division (phylum) name, the taxon was not validly
published because he did not provide or refer to
a Latin description or diagnosis or explain the basis of
or rationale for this name (Article 36.1, Greuter et al
2000). Consequently it is nomen nudum and further-
more the group that Tehler (1988) circumscribed
with this name is not monophyletic. Thus we have
used Blastocladiomycota as a phylum for a mono-
phyletic clade (Clade 3), validated the phylum name
with a Latin description and have designated a type. A
potentially competing phylum name, Allomycota
(Cavalier-Smith 1981), is invalid because Cavalier-
Smith did not include a Latin diagnosis. We may
select the phylum name Blastocladiomycota however
because the principle of priority is not mandatory
above the rank of family (Article 11.1, 11.9). Cavalier-
Smith (1998) eventually validated class Allomycetes
with Latin; however this validation is moot to our

selection because a name does not have priority
outside its own rank (Article 11.2). As we have
described the Blastocladiomycota, it is a natural
group separate from the more heterogeneous phylum
Archemycota (Cavalier-Smith 1998).

Clade 4. Olpidium brassicae.—Olpidium brassicae
unexpectedly grouped among the polyphyletic Zygo-
mycota and with the nonzoosporic fungi. O. brassicae
currently is assigned to the Spizellomycetales (Barr
1980), although this placement was considered
tenuous (Barr 2001). Few ecological and morpholog-
ical features unite O. brassicae and Zygomycota; O.
brassicaeis a root pathogen of cucurbits, whereas most
members of the Zygomycota II lineage (FIG. 2) are
associated with animals. The zoospore of O. brassicae
contains a unique combination of features, cone-
shaped striated rhizoplast, gamma-like particles and
rough endoplasmic reticulum (Lange and Olson
1976). These ultrastructural features as well as
holocarpic, endobiotic sporangia had suggested a re-
lationship between Olpidium and Rozella (Held 1975),
but Olpidium differs from Rozella in that sporangia of
the former develop a cell wall inside the host
cytoplasm while sporangia of Rozella do not and
instead use the host’s cell wall (Held 1981). Further
data will be needed to determine the exact phyloge-
netic position of O. brassicae and whether it shares
a common ancestor with the majority of terrestrial
fungi. We predict that Caulochytrium protostelioides
with a similar zoosporic ultrastructure and aerially
produced sporangia (Powell 1981) also will be
a member of this currently monotypic clade.

Toward a phylogenetic classification.—The paraphyly
of the Chytridiomycota requires that its current
circumscription be redefined to produce a phyloge-
netic classification system. Placing all flagellated true
Fungi into one phylum does not reflect shared
ancestry of these fungi because the flagellum was
a character possessed by the common ancestor of all
Fungi (i.e. it is a pleisiomorphic character. Further-
more the absence of a flagellated state (as in
Hyaloraphidium curvatum) should not prevent the
inclusion of nonzoosporic fungi among natural
groups of Chytridiomycetes. The phylogeny (FIG. 2)
suggests the existence of at least four major lineages
of chytrids. The distinction of Blastocladiomycota
from other chytrids is clear on the basis of life cycle
(Sparrow 1960), ultrastructural characters (FIG. 3)
and multiple molecular phylogenetic studies using
rDNA (James et al 2000, this study), RPB1 (Tanabe et
al 2004), RPB2 (T.Y. James unpublished) and whole
mitochondrial genome sequencing (Seif et al 2005).
The exact placement of the holocarpic parasites
Rozella and Olpidium, formerly included in the
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Spizellomycetales, is an open question because of
limited sampling of taxa, a paucity of molecular data
and phylogenetic uncertainty (in the case of O.
brassicae).

Molecular studies have revealed that many current-
ly defined genera in Chytridiales are polyphyletic
(James et al 2000, Letcher and Powell 2005b, Letcher
et al 2005). Our results show that neither develop-
mental characters, such as polycentric growth, or
sporangial characters, such as presence of an opercu-
lum, will be useful in defining families or even
genera. These phylogenies demonstrate a repeated
evolution of polycentric growth in nearly every well
sampled clade, suggesting the evolution of this form
of indeterminant growth does not require a complex
genetic change. Some of the largest genera (e.g.
Rhizophydium, Entophlyctis and Chytriomyces) are
based on few distinctive characters and are dramati-
cally in need of revision. Other genera are highly
distinctive (e.g. Loborhiza, Obelidium) but are mono-
typic. Current efforts are focused on combining
morphological, ultrastructural and molecular data to
use a holistic approach for redefining genera of
Chytridiales (e.g. Letcher and Powell 2005b).

Application of zoospore ultrastructural characters.—A
resolved phylogeny of the chytrid fungi now permits
the mapping of ultrastructural character states onto
the gene tree to further our understanding of
character evolution. For example the electron-dense
plug in the base of the flagellum has been
considered phylogenetically informative (Barr
2001). This structural character state is present in
all members of the Chytriomyces (2K, Letcher et al
2005), Cladochytrium (2D) and Polychytrium (2C)
clades examined thus far. It is absent in the Rozella
(1), Neocallimastigales (2A), Blastocladiomycota (3)
and Obpidium (4) clades (Barr 2001). When the
presence or absence of this character is mapped
onto the rDNA phylogeny, it appears that this
character was present in the ancestor of the
Chytridiales and Monoblepharidales (clades 2B-K)
but has been lost repeatedly in independent
lineages (FIG. 2). For example in the Synchytrium
clade (2E) this structure may be either present (S.
endobioticum, Lange and Olsen 1978) or absent (S.
macrosporum, Montecillo et al 1980); in the Mono-
blepharidales (2B) it is either present (i.e. Mono-
blepharis polymorpha, Mollicone and Longcore 1994)
or lost (Gonapodya polymorpha, Mollicone and Long-
core 1999); it has been lost in the Spizellomycetales
(21 and 2], Barr 1980) and Rhizophydium clades (2G;
Letcher et al 2004b, 2006). Thus an apparently
identical character state, the absence of the flagellar
plug, is a convergent character state if applied to

organisms from different lineages but it may be
a valuable character for taxonomic purposes within
a lineage. The heuristic exercise of mapping
morphological characters on gene trees suggests
that some character states have evolved repeatedly in
distinct lineages, thus creating an opportunity for
previous assumptions regarding character homology
to be reassessed in a phylogenetic context.

Summary of current phylogenetic knowledge and
remaining questions.—We have identified four major
lineages of chytrid fungi, the largest of which can be
subdivided into 11 additional clades. By increasing
the sampling of both rRNA characters and species we
have greatly expanded our knowledge of phylogenetic
diversity and relationships among the groups of
chytrids. Our results confirm previous phylogenetic
studies and ultrastructural information that suggest
the Blastocladiales is distinct from the remaining
chytrids and possibly more closely related to the
nonzoosporic fungi than the core chytrids. Thus we
have elevated the order Blastocladiales to the level of
phylum (Blastocladiomycota). Based on the present
research, as well as the results of the Assembling the
Fungal Tree of Life project (http://ocid.nacse.org/
research/aftol/) and complete sequencing of fungal
mitochondrial genomes (Seif et al 2005), the phylog-
eny of the core chytrids is beginning to be resolved
with the Neocallimastigales as the earliest diverging
lineage and the Monoblepharidales as sister taxon of
a clade containing Chytridiales+Spizellomycetales.
Phylogenetic investigations in the past three years
suggest that much of the diversity in the chytrids is
found in species that are not readily cultured (e.g.
Olpidium, Rozella, Synchytrium). Remaining questions
in the chytrid phylogeny are the exact placement of
Olpidium and whether microsporidia are a part of the
basal grade of chytrids. Further sampling of DNA
sequences from species that are obligate biotrophic
parasites with unique zoospore ultrastructure (e.g.
Caulochytrium [Powell 1981], Thalassochytrium [Ny-
vall et al 1999] and Zygorhizidium [Beakes et al 1988])
might yet uncover additional clades. Furthermore,
given that a number of chytrid species are facultative
or obligate anaerobes, sampling of these environ-
ments also might uncover additional phylogenetic
diversity.
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