

USING WEB AGENTS FOR DATA
MINING OF FUNGAL GENOMES

Audrius Meškauskas
Alte Gfennstr. 22, CH-8600 Dubendorf, Switzerland (AudriusA@Bioinformatics.org).

We created an application called Sight, a Java™-based package that provides a user-
friendly interface to generate and connect agents for automatic genomic data mining
without requiring programming skills from the user. Sight was originally developed to
automate analysis of the human genome and attempts to generate web agents for
fungus-related Internet resources revealed that some of those resources use new
methods of representing the information they report, and some servers returned
multiple intermediate pages leading towards their response, which created difficulties
for automated recovery of results. Consequently, it was not possible to use effectively
the old version of Sight so this version of the application was adapted with a little
additional programming, creating a new version for which these features of the fungal
genome servers do not represent a problem. The new version of Sight (v. 3.0.0) that is
tailored to servers carrying fungal databases is freely available for download from the
project website at these URLs:

http://bioinformatics.org/jSight/ and http://jsight.sourceforge.net/index_SF.htm.

1. INTRODUCTION

 As more genomes are sequenced and added to the publicly available databases the
opportunities for data mining expand in terms of both the range of organisms
available and the biological systems open to analysis. For the most part, these
opportunities are still enjoyed by the relatively few people (or teams) who have the
necessary combination of the biological expertise to frame the research questions and
the programming skills to take full advantage of the database server resources that are
available. No computer programming can yet supply the biological expertise, but
many of the operations involved in data mining server databases are mechanical and
repetitive. These are open to management by appropriate programming techniques to
produce routines that carry out the data mining on behalf of the researcher and
consequently use the available computer power to extend the research reach of the
individual in time and space. Importantly, these advantages are not limited to those
who have the programming skills to create those routines in the first place. Today’s
programming languages enable the development of applications that make creation of
programming routines a matter of assembling a sequence of preprogrammed modules,
that application itself writing the code that will eventually carry out the job. In much
the same way that presentation applications allow the user to assemble a multimedia
presentation without need of programming skills to bring together text, images, video
and sound, so these data mining applications allow the non-programmer to assemble a
sequence of routines that retrieve sequences, query databases, retrieve results and
then, potentially, formulate new searches on the basis of responses to earlier queries.

These applications produce ‘web agents’, which are computer programs that search
the Internet on behalf of their author for data that the author requires.
 Existing systems for automated access to the Internet resources are usually either
specialized for a single given task or written as a general purpose tools. By their levels
of complexity, these can be grouped in the following categories:

1. Single task, single step web agents work with a single web service only. For
example, WebBlast (Ferlanti et al., 1999) stores the search requests in the
local query and schedules submissions to the server (for example, during the
night time). BioQuery (Brundege and Dubay, 2003) periodically searches
NCBI database (Wheeler et al., 2003) using the previously stored queries. As a
rule, such systems automate a submission only. The returned response is
analyzed by the user.

2. Multiple task, single step web agent systems are collections of the single task

web agents, having shared user interface and shared mechanisms for
integrating the new web services. For example, Sewer (Basu, 2001) is a
JavaScript based system of web pages containing web forms for accessing
various bioinformatics web services. These forms replace the original forms of
the corresponding web pages, creating a more effective environment for the
user. The Sewer assistance ends after the request is sent. Differently from
Sewer, Proteomix (Chikayama et al., 2004) needs specialized software on the
server side, communicating via a more advanced protocol called SOAP
(Simple Object Access Protocol). This tool is more specialized, analyzing the
given protein sequence in a variety of ways.

3. Multiple step, fixed workflow systems connect several agents into a workflow.

Such systems are frequently used for automated genome annotations. First,
some gene prediction service must assemble the sequenced clones and predict
the genes for the given DNA sequence. Next, one (or, more often several)
other services provide some conclusions about the predicted protein (for
example, that there are known proteins to which it is similar, that known
functional domains are present, how many transmembrane regions it may
contain, and so on). The results are usually stored in a database. Examples of
such systems could be Genotator (Harris, 2000), Pedant (Frishman et al.,
2001) or Fountain (Buerstedde and Prill, 2001).

4. Changeable workflow, fixed agent set systems are used for flexible

workflows, where the agents for the workflow are picked from a fixed list. The
integration of new services still needs serious programming effort in these
cases. Several such systems were suggested quite a long time ago, usually
adapting already existing frameworks for the needs of bioinformatics analysis.
In this category we could mention Kleisli (Kolatkar et al., 1998), GAIA
(Bailey et al., 1998) or Tambis (Stevens et al., 2000).

5. Changeable workflow, extendable agent set systems allows the end user to add

new agents without significant programming effort. Depending on the method

by which the new agents are added, this group falls into the following
subgroups:

a) Systems in which the originators take pains to create a simple way for

adding new agents written by user proficient at programming. Many
projects (for example EDITtoTrEMBL) support integration of the user-
written code, and this possibility usually remains in more advanced
systems like Sight or Taverna.

b) Systems that automatically generate code templates that must be

finished by the user with a little additional programming. In this case
the system itself usually focuses on handling the communication
between agents. A good example of such a skeleton generator is Decaf
(Graham et al., 2003).

c) The new agent is generated using a graphical user environment, which

is the approach employed by the Sight program discussed in more
detail below. In these cases the operator provides all the necessary
additional information, but the program writes the code.

d) The web server that provides the web service the user wishes to access

may also offer additional web document(s) that can be used to create
web agent(s) for the service. This document defines the formats of the
possible requests and responses. It is usually written in WSDL, the
machine-readable language created for describing web services. The
server must also be connected using a specific protocol, different from
the protocol used to submit a web form. The most advanced
experimental applications like Taverna (Oinn et al., 2004) rely
exclusively on this new approach and cannot integrate the ordinary
web services. We think that a more useful approach could be to add
WSDL support without discarding the ability to create agents for work
with the classic web forms.

We have created an application called Sight, which is a Java™-based package that

provides a user-friendly interface to generate and connect agents for automatic
genomic data mining, allowing the user without programming skills to tailor web
agents for his/her individual requirements (Meškauskas et al., 2004). Sight allows the
assembly of an arbitrary flowchart-like workflow. Using a Web form the user chooses
agents from a built-in library and connects the response data fields of one agent to the
request data fields of another. This user-interactive agent generator produces agents
that can be connected for sequential tasks using the application. To minimize Internet
connections for trivial tasks, Sight incorporates the algorithms for several functions
such as pattern searches, protein translations or simple sequence manipulations have
been included in the application for local use.

There are several other facilities available in the application, but Sight’s built-in
web agent generators have never been tested on the fungal-specific Internet resources.
Web pages devoted to such resources were designed later than pages devoted to plant
or human sequences. As a result, they make intensive use of advanced features like
JavaScript language, unusual (often nested) tables, multiple pages per response, and

so on. Such features provide a serious challenge for web agent applications that must
still be able to extract a clear data structure from a complicated multi-page server
response. The purpose of this work was to test and adapt the Sight system, enabling
easier creation of fungal-related workflows. The list of web resources used to tailor
Sight to fungal genome servers (Table 1) was taken from the chapter by Moore et al.
(this volume).

Table 1. The fungus-related Internet resources supported by the most recent version
of the Sight web agent application (version 3.0.0).

Organism URL Resources

Aspergillus fumigatus http://www.tigr.org/tdb/e2k1/afu1/ Similarity search (nucleotide
sequences only)

Cryptococcus neoformans http://www.tigr.org/tdb/e2k1/cna1/ Similarity search (protein and
nucleotide sequences)

Phaenerochaete
chrysosporium

http://genome.jgi-
psf.org/whiterot1/whiterot1.home.html

Similarity search (nucleotide
sequences only).

2. RESULTS

A Sight web agent is essentially an active flow chart in which each element is a
working preprogrammed routine. The user assembles the flow chart according to the
task s/he wishes to perform. I will outline here the specific changes that have to be
made, either to the program or to its implementation, in order to apply Sight to data
mining of fungal genomes.

2.1 Main conceptions of the Sight workflow

Sight architecture has been significantly modified since the program was first
briefly described in the literature (Meškauskas et al., 2004), by the addition of loops,
confluences (convergences), and so on. These new features will be described below.

2.1.1 Sight agent

The reusable elementary unit (or agent) executes a single remote or local
algorithm. For this we need two data structures, defining the submitted request and the
received response.

Sight request consists of the multiple named items (fields), each storing a string
value. They normally correspond to the fields, checkboxes and other controls in the
web form that was used as the initial data to generate the agent. In contrast to the
request, the result of the bioinformatical web agent often needs to be an array of
records. For example, a similarity search service may return multiple hits to the
sequences in the database; a gene prediction program may find multiple genes in a
DNA sequence; a program for predicting transmembrane segments may detect
multiple transmembrane helixes, etc. Hence, Sight agent response is programmed as
an array of records. These records also consist of multiple named fields.

As the request and response format differs for each agent, the agents also contain
explanatory data structures defining these formats. For each request or response field
they define its type, name and arbitrary comment. The request fields can also have a
default value and a list of other possible values.

Fig. 1. An illustration of data flow during data type conversion for the case of the simple linear
workflow employing three Sight agents A, B and C. The initial request for the agent A consists of 3
fields. This agent returns a request from two records. Each of them also have 3 fields. The request of
agent B consists of one field, and the value for this is taken from field 3 in the agent A response (=
results) record. As agent A returns two records, two independent requests (a and b) for agent B will be
created (shown as dashed and solid lines). Let us suppose that for one of these two requests agent B
returned two records, each having 2 fields. Now, finally, the request is made to agent C consisting of 4
fields that must be filled by various values from the workflow. Field 1 is identical to the field from the
agent B request, field 2 is identical to the field 2 from the agent B results record, field 3 takes its value
from field 2 in the initial workflow request for agent A, and finally field 4 takes its value from field 2 in
the agent B response record. As agent B has returned two records to the request b, two requests for
agent C will be created for this branch. However as agent B also has another request (a), the total
number of requests to agent C depends on the number of records in the agent B response to its request
a. If this response contains, for example, 3 records, the total number of the requests to agent C will be 3
+ 2 = 5.

2.1.2 Sight workflow

For any workflow, connection between two agents it is only possible if the result
of the master agent can be converted to the request for the slave agent. Some systems
require that these two data structures should be identical or (like Decaf) leaves the
solution of the problem to the programming user. On the other hand the Sight
application generator produces Java™ code to create a slave request from the master
response. More exactly, the request is created using the full hierarchy of response and
request (the master response, master request, the master of master response, the
request that was sent to the master of master and so on) right up to the level of
workflow input data (Fig. 1).

The code for such a workflow is generated automatically; the user simply
connects the required request and response fields. Fig. 2 illustrates the simple case of
a branching, tree-like workflow. As shown in this example, the system can potentially
generate a large number of requests, especially for the agents standing lower in the
hierarchy. For example, if the master agent has returned 7 records, these will represent
7 requests for the slave agent. If this slave agent has returned, for example, 5 records
for each request and has its own slave agent, the number of requests for this slave-of-
slave will already be 30. The inbuilt Sight security system limits the number of
parallel submissions to the same web service to prevent server overload.

Previous Sight versions supported linear and tree like workflows only. However,
the current version (v. 3.0.0), as presented in this manuscript, also supports loops and
confluences (Figs 3 & 4). The confluence arises when two or more branches of the
tree workflow must join together again to provide data for a shared agent (Fig. 3). Our
solution for the type conversions for confluences is to process all possible
combinations of the records in the two master agent responses. For example, if the
workflow has branched and two slave agents have the shared slave-of-slave agent, and
one of these two agents has returned 5 and another 3 records in response, it is possible
to combine 15 different requests for the shared slave-of-slave agent.

2.1.2 Loops

Sight 3.0.0 supports circular workflows. Such algorithms are used, for example, in
building sequence similarity networks or in reconstruction of metabolic pathways.
The loops are realised with a pair of two communicating specialised agents: loop
starter and loop closer (Fig. 4). The loop starter just passes all its requests through.
When the loop closer receives the request, it communicates the loop starter, initiating
the additional “virtual request”. This “virtual request” is processed by the agents
between the loop starter and loop closer and may initiate the subsequent new virtual
requests. The loop is terminated when one of the agents between the starter and closer
returns the empty response (no records) or when the maximal number of iterations is
exceeded.

2.1.3 Storing the results

The results of running the workflow must be stored for subsequent viewing or
analysis by the user. For systems with a fixed workflow the results are usually stored
in the database. However each user-defined workflow usually needs a new database
structure. It is difficult to implement a user-friendly interface for accessing these
multiple different databases. The older versions of Sight stored the results in the html
documents.

Fig. 2. Illustration of data flow during data type conversion for the case of a branching (tree-like)
workflow. Here, agent B requires the value held in field 3 from the master response record. Agent C
requires field 1 from the master response record, but it additionally needs the data in field 2 from the
master request. As the master A has returned two records in response, both slave agents (B and C)
receive the requests (a and b).

Taverna tried another approach, creating a complicated folder and subfolder structure
on the local file system. In the new Sight version we implemented the ability to store
the results in the form of network. The agent responsible for storing the network takes
the names of the two nodes that must be connected. As the agent receives more and
more requests, the number of currently existing nodes and connections increases. The
created network can be viewed with the free bioinformatical graph viewer CytoScape
(Shannon et al., 2003). Sight also has a specialised group of agents (loggers) that just
append the requests to the local files. In this way the interesting information can be
logged separately in FASTA or some other format.

Fig 3. The simple case of confluence. In this workflow, the agent I is a master for two agents A and B.
Agent C is a shared slave agent for A and B. If agent I returns a single record result, agents A and B
both receive a single request (not shown). However, both A and B results contains two records, and the
shared slave needs fields from both master agents, this workflow generates four requests for agent C.
Confluences are only supported in the new version of the program Sight 3.0.0 alpha.

2.2. Testing the web form submission module

To create a web agent we must first submit a biologically relevant request; if a
similarity search is the main interest then the request must be for a protein or
nucleotide sequence that the user expects to be found in the server database. For easier
preparation of test requests, the web agent generation system needs some built-in
example sequences. As Sight was written as a tool for analysis of the human genome,
the program was initially equipped with sample protein, DNA and RNA sequences
taken from human sources. Such sequences have no analogues in fungal genomes, so
the corresponding similarity searches return no hits. To provide realistic queries, I
have extended the built-in example set by adding the RNA and protein sequences of
ribonucleotide reductase M2. A similarity search test operation will now find similar
sequences in any fungal genomes the user cares to test.

Fig 4. The concept of processing loops in Sight. The figure illustrates a simple loop, where agent A is
placed between the loop starter and loop closer. During the first iteration the loop starter send one
request to its slave agent A. As agent A returned two records in its result, the loop closer (slave agent
for A) receives two requests and during the next iteration produces two virtual requests for the loop
starter. The words “initial”, “a” and “b” are sample values and illustrate how the structures are
converted during iterations. Loop agents can handle up to 3 loop variables (X, Y and Z). Loops are
supported in Sight 3.0.0 alpha and higher.

2.3 Testing and extending the redirection system

In the simplest case a web server accepts the web query form the user has
completed on-line, performs the requested search, and returns a web page that
contains the results of the bioinformatics analysis. The duration of analysis is usually
limited by automatic breaks in the connection after several minutes caused either at
the client or server side. Recent experience shows that increasing numbers of web
services are returning an intermediate page. This page confirms that the request has
been accepted and is being dealt with, and contains the hyperlink that must be

followed to retrieve results. If this hyperlink is followed before the server has
completed the task, another page is returned suggesting the enquirer might like to be
more patient and wait for some further time. Essentially, this strategy allows the
server an unlimited amount of time to complete the task. However, most of the
fungus-related web services go even further. Instead of returning the complete result,
they tend to provide only a synopsis or general description. For example, the result
page of a similarity search over the P. chrysosporium genome does not contain the
score for the similarity search. Such important details can only be retrieved by
following additional links from the response page. If the web agent is to extract the
user’s results effectively, then it must be able to deal automatically with these
intermediate pages returned by the database server.

Sight already supported the most trivial cases, but we found that the redirection
problem required rather more attention. The first difficulty is that the number of
intermediate pages may not be known in advance and they may need different
algorithms to find the hyperlink to follow. Another problem is that in some cases the
user is expected to follow several links from a single page, which creates a task
related to web crawling for the web agent. A new version of Sight has been produced
that replaces such a sophisticated agent with a mini-workflow consisting of
specialised sub agents that find the hyperlinks the user is expected to follow to get all
of the results. Mini-workflows are assembled and tested like the ordinary Sight
workflows, but after generation, they join the final Sight application as main agents.
Mini-workflows cannot be realised simply as part of the ordinary Sight workflow
because a different caching strategy is required. The intermediate hyperlinks that have
to be followed must not be cached. Instead, the final result must be cached using the
initial request to compute the caching key.

2.4 Testing and extending agent algorithms

It is typical to illustrate the results of searches with graphics. However, the services
for which Sight was originally designed report the same information in text form and
so until now Sight’s web agents did not need to analyze these figures. Unfortunately,
fungal genome servers are different. For example, the result of a similarity search of
the P. chrysosporium genome comprises just one large image illustrating the
position(s) of the hit(s) that have been found in the total DNA sequence. To get more
information, it is necessary for the user to mouse-click on the image. From the point
of view of a web agent, it is necessary to follow those hyperlinks defined in the “hot
spots” in the image, but the graphic contains several “hot spots” and only some of
them lead to pages with useful additional information. The links that are needed
cannot always be recognized from the surrounding data by an automatic routine, but
in many cases they can be recognized from the Internet address itself. In the example
quoted the link must contain the substring “getAlignment”. Hence, we have produced
a new Sight version that includes the previously missing feature of selecting data
fields by content rather than by context.

Experience with fungal genome servers also showed that the automated table
analysis of the original version of Sight also needed serious improvement. Details of
search results of the P. chrysosporium genome are presented in the form of multiple
tables, there being one table per search hit. Instead of working with the single table
generated by human genome servers, the fungal web needs to collect results from
several very similar tables. Interestingly, these tables themselves are cells of an even
larger “supertable”.

To solve this problem in Sight, we have now implemented a concept of the table
“domain”, defining the table position in the nested supertables (Fig. 5).

Fig. 5. Illustration of the concept of the table domain on the results web page returned by the genome
server in response to a query. In this example, the required data are located in the table in the group of
cells shown as 1.2, 2.2 and 3.2 and the web agent identifies these by their content.

2.5. Discussion and Prospects

The version of Sight which has now been tailored to use fungal genome servers
will be extremely useful to mycologists involved in data mining. There are still some
remaining problems, though. The most challenging among these are servers that
return work results to the enquirer by E-mail (for example, the Whitehead Institute
servers). It is not difficult to program automated E-mail checking, but the issue that
arises is that in complicated workflows there may be several agents issuing requests
and there is a problem in deciding which agent in the workflow sent a specific request
which is answered by a specific E-mail. For example, if two agents in a workflow
submit requests to the same server (say, related searches on different sequences), then
how can the E-mail messages be correctly sorted automatically when the server
returns them? Evidently, the server response must contain some kind of “submitter
name” which the agents can use for sorting. Many servers do provide such support,
allowing the user to specify, for example, the sequence header. That header may be
used subsequently by the web agents for their own orientation. This is not a trivial
problem and, for the moment, this part of the application is not sufficiently reliable,
and we are still not ready to release it for wider use.

3. CONCLUSION

During attempts to generate web agents for fungus-related Internet resources (Table 1)
it was recognized that some of those resources use new methods of representing the
information they report. In some cases it was not possible obtain search details with
the previously available version of Sight (v. 2.1.2), and some servers returned
multiple intermediate pages leading towards their response which created difficulties
for automated recovery of results. Despite these problems, it was possible to use Sight
to create web agents that are able to automate searches of fungal genomes. The
previous version of the application was adapted with a little additional programming,

creating a new version for which these features of the fungal genome servers do not
represent a problem. The new version of Sight (v. 3.0.0) that is tailored to servers
carrying fungal databases is freely available for download from the project website at
these URLs:

http://bioinformatics.org/jSight/ and http://jsight.sourceforge.net/index_SF.htm.

Acknowledgement: I thank Dr David Moore (School of Biological Sciences, University of
Manchester) for making the original suggestion that I should test the Sight application on fungal
resources and implement the adaptations that were needed.

REFERENCES

Bailey LC, Fischer S, Schug J, Crabtree J, Gibson M and Overton GC (1998). GAIA: framework

annotation of genomic sequence. Genome Research 8:234-250.
Basu MK (2001). SeWeR: a customizable and integrated dynamic HTML interface to bioinformatics

services. Bioinformatics 17: 577-578.
Buerstedde JM and Prill F (2001). FOUNTAIN: A JAVA open-source package to assist large

sequencing projects. BMC.Bioinformatics: 2, 6-7.
Brundege JM and Dubay C (2003). BioQuery: an object framework for building queries to biomedical

databases. Bioinformatics 19:901–902.
Chikayama E, Kurotani A, Kuroda Y and Yokoyama S (2004). ProteoMix: an integrated and flexible

system for interactively analyzing large numbers of protein sequences. Bioinformatics: (in press).
Ferlanti ES, Ryan JF, Makalowska I and Baxevanis AD (1999). WebBLAST 2.0: an integrated solution

for organizing and analyzing sequence data. Bioinformatics 15:422-423.
Frishman D, Albermann K, Hani J, Heumann K, Metanomski A, Zollner A and Mewes HW (2001).

Functional and structural genomics using PEDANT Bioinformatics 17:44-57.
Graham J, Decker K.S and Mersic M (2003). Decaf - a flexible multi-agent system architecture

Autonomous Agents and Multi-Agent Systems. 7(1): 7-27.
Harris NL (2000). Annotating sequence data using Genotator. Molecular.Biotechnology 16:221-232.
Kolatkar PR, Sakharkar MK, Tse CR, Kiong BK, Wong L, Tan TW and Subbiah S (1998).

Development of software tools at BioInformatics Centre (BIC) at the National University of
Singapore (NUS). Pacific Symposium on Biocomputing 735-746.

Meškauskas A, Lehmann-Horn F and Jurkat-Rott K (2004). Sight: automating genomic data-mining
without programming skills. Bioinformatics 20:1718-1720.

Moller S, Lesser U, Fleischmann W and Apweiler R. (1999). EDITtoTrEMBL: a distributed approach
to high-quality automated protein sequence annotation. Bioinformatics 15: 219-227.

Oinn T, Addis M, Ferris J, Marvin D, Greenwood M, Carver T, Pocock MR, Wipat A and Li P (2004).
Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics in
press; advance access doi: 10.1093/bioinformatics/bth361.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker
T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res. 13: 2498-2504.

Stevens R, Baker P, Bechhofer, S, Ng G, Jacoby A, Paton NW, Goble CA and Brass A (2000).
TAMBIS: transparent access to multiple bioinformatics information sources. Bioinformatics
16:184-185.

Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM,
Sequeira E, Tatusova TA and Wagner L (2003). Database resources of the National Center for
Biotechnology. Nucleic Acids Res. 31: 28-33.

