Chapter 6.10 References and further reading

Adams, D.J. (2004). Fungal cell wall chitinases and glucanases. Microbiology, 150: 2029-2035. DOI: http://dx.doi.org/10.1099/mic.0.26980-0.

Aimanianda, V., Bayry, J., Bozza, S., Kniemeyer, O., Perruccio, K., Elluru, S.R., Clavaud, C., Paris, S., Brakhage, A.A., Kaveri, S.V., Romani, L. & Latgé, J.-P. (2009). Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 460: 1117-1121. DOI: https://doi.org/10.1038/nature08264.

Arroyo, J., Farkaš, V., Sanz, A.B. & Cabib, E. (2016). Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity. Cellular Microbiology, 18: 1239-1250. DOI: https://doi.org/10.1111/cmi.12615.

Banks, I.R., Specht, C.A., Donlin, M.J., Gerik, K.J., Levitz, S.M., Lodge, J.K. & Doisy, E.A. (2005). A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryotic Cell, 4: 1902-1912. DOI: https://doi.org/10.1128/EC.4.11.1902–1912.2005.

Bartnicki-Garcia, S. (1999). Glucans, walls, and morphogenesis: on the contributions of J.G.H. Wessels to the golden decades of fungal physiology and beyond. Fungal Genetics and Biology, 27: 119-127. DOI: https://doi.org/10.1006/fgbi.1999.1144.

Bartnicki-Garcia, S. (2006). Chitosomes: past, present and future. FEMS (Federation of European Microbiological Societies) Yeast Research, 6: 957-965. DOI: https://doi.org/10.1111/j.1567-1364.2006.00158.x.

Bartnicki-Garcia, S., Bracker, C.E., Gierz, G., López-Franco, R. & Lu, H. (2000). Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophysical Journal, 79: 2382–2390. DOI: https://doi.org/10.1016/S0006-3495(00)76483-6.

Bowman, S.M. & Free, S.J. (2006). The structure and synthesis of the fungal cell wall. BioEssays, 28: 799–808. DOI: https://doi.org/10.1002/bies.20441.

Braga, G.U.L., Rangel, D.E.N., Flint, S.D., Anderson, A.J. & Roberts, D.W. (2006). Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology, 82: 418–422. DOI: https://doi.org/10.1562/2005-05-08-RA-52.

Calonje, M., Mendoza, C.G., Cabo, A.P. & Novaes-Ledieu, M. (1995). Some significant differences in wall chemistry among four commercial Agaricus bisporus strains. Current Microbiology, 30: 111-115. DOI: https://doi.org/10.1007/BF00294192.

Coronado, J.E., Mneimneh, S., Epstein, S.L., Qiu, W.G. & Lipke, P.N. (2007). Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryotic Cell, 6: 2269-2277. DOI: https://doi.org/10.1128/EC.00044-07.

Cortesão, M., Siems, K., Koch, S., Beblo-Vranesevic, K., Rabbow, E., Berger, T., Lane, M., James, L., Johnson, P., Waters, S.M., Verma, S.D., Smith, D.J. & Moeller, R. (2021). MARSBOx: fungal and bacterial endurance from a balloon-flown analog mission in the stratosphere. Frontiers in Microbiology, 12: article number 601713. DOI: https://doi.org/10.3389/fmicb.2021.601713.

Cox, A.R., Aldred, D.L. & Russell, A.B. (2009). Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocolloids, 23: 366-376. DOI: https://doi.org/10.1016/j.foodhyd.2008.03.001.

Cox, P.W. & Hooley, P. (2009). Hydrophobins: new prospects for biotechnology. Fungal Biology Reviews, 23: 40-47. DOI: https://doi.org/10.1016/j.fbr.2009.09.001.

Dadachova, E., Bryan, R.A., Howell, R.C., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D. & Casadevall, A. (2008). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Research, 21: 192-199. DOI: https://doi.org/10.1111/j.1755-148X.2007.00430.x.

De Groot, P.W.J., Ram, A.F. & Klis, F.M. (2005). Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology, 42: 657-675. DOI: https://doi.org/10.1016/j.fgb.2005.04.002.

Douglas, C.M. (2001). Fungal β(1,3)-D-glucan synthesis. Medical Mycology, 39 Supplement 1: 55–66. DOI: https://doi.org/10.1080/744118880.

Dranginis, A.M., Rauceo, J.M., Coronado, J.E. & Lipke, P.N. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiology and Molecular Biology Reviews, 71: 282-294. DOI: https://doi.org/10.1128/MMBR.00037-06.

Driver, J.D., Holben, W.E. & Rillig, M.C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry, 37: 101-106. DOI: https://doi.org/10.1016/j.soilbio.2004.06.011.

Elsacker, E.V. (2021). Mycelium Matters. An interdisciplinary exploration of the fabrication and properties of mycelium-based materials. Thesis submitted for the degree of Doctor in Engineering Sciences. Department of Architectural Engineering, Faculty of Engineering, Vrije Universiteit Brussel. URL: https://www.researchgate.net/publication/350887016_MYCELIUM_MATTERS_-_An_interdisciplinary_exploration_of_the_fabrication_and_properties_of_mycelium-based_materials.

Eom, T., Woo, K., Cho, W., Heo, J., Jang, D., In Shin, J., Martin, D., Wie, J.J. & Sup Shim, B. (2017). Nanoarchitecturing of natural melanin nanospheres by layer-by-layer assembly: macroscale anti-inflammatory conductive coatings with optoelectronic tunability. Biomacromolecules, 18: 1908-1917. DOI: https://doi.org/10.1021/acs.biomac.7b00336.

Erental, A., Dickman, M. B. & Yarden, O. (2008). Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “dormant” structure. Fungal Biology Reviews, 22: 6-16. DOI: https://doi.org/10.1016/j.fbr.2007.10.001.

Erwig, L.P. & Gow, N.A.R. (2016). Interactions of fungal pathogens with phagocytes. Nature Reviews Microbiology, 14: 163-176. DOI: https://doi.org/10.1038/nrmicro.2015.21.

Fernandes, C., Gow, N.A.R. & Gonçalves, T. (2016). The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biology Reviews, 30: 1-14. DOI: https://doi.org/10.1016/j.fbr.2016.03.002.

Flemming, H.-C. (2016). EPS-then and now. Microorganisms, 4: article 41 (18 pp). DOI: https://doi.org/10.3390/microorganisms4040041.

Free, S.J. (2013). Fungal cell wall organization and biosynthesis. Advances in Genetics, 81: 33-82. DOI: https://doi.org/10.1016/B978-0-12-407677-8.00002-6.

Gagnon-Arsenault, I., Tremblay, J. & Bourbonnais, Y. (2006). Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Research, 6: 966-978. DOI: https://doi.org/10.1111/j.1567-1364.2006.00129.x.

Geoghegan, I., Steinberg, G. & Gurr, S. (2017). The role of the fungal cell wall in the infection of plants. Trends in Microbiology, 25: 957-967. DOI: https://doi.org/10.1016/j.tim.2017.05.015.

Gow, N.A.R., Latgé, J.-P. & Munro, C.A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum, 5: FUNK-0035-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

Harding, M.W., Marques, L.L.R., Howard, R.J. & Olson, M.E. (2009). Can filamentous fungi form biofilms? Trends in Microbiology, 17: 475-480. DOI: https://doi.org/10.1016/j.tim.2009.08.007.

Hobley, L., Harkins, C., MacPhee, C.E. & Stanley-Wall, N.R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiology Reviews, 39: 649-669. DOI: https://doi.org/10.1093/femsre/fuv015.

Howard, R.J., Ferrari, M.A., Roach, D.H. & Money, N.P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Academy of Sciences of the United States of America, 88: 11281-11284. DOI: https://doi.org/10.1073/pnas.88.24.11281.

Huberts, D.H.E.W. & van der Klei, I.J. (2010). Moonlighting proteins: an intriguing mode of multitasking. Biochimica et Biophysica Acta, Molecular Cell Research, 1803: 520-525. DOI: https://doi.org/10.1016/j.bbamcr.2010.01.022.

Ichinomiya, M., Yamada, E., Yamashita, S., Ohta, A. & Horiuchi, H. (2005). Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans. Eukaryotic Cell, 4: 1125-1136. DOI: https://doi.org/10.1128/EC.4.6.1125–1136.2005.

Jeffery, C.J. (1999). Moonlighting proteins. Trends in Biochemical Sciences, 24: 8-11. DOI: https://doi.org/10.1016/S0968-0004(98)01335-8.

Jirjis, R.I. & Moore, D. (1976). Involvement of glycogen in morphogenesis of Coprinus cinereus. Journal of General Microbiology, 95: 348-352. DOI: https://doi.org/10.1099/00221287-95-2-348.

Jones, M., Tien, H., Chaitali, D., Fugen, D. & Sabu, J. (2017). Mycelium composites: a review of engineering characteristics and growth kinetics. Journal of Bionanoscience, 11: 241-257. DOI: https://doi.org/10.1166/jbns.2017.1440.

Klis, F.M., Boorsma, A. & De Groot, P.W.J. (2006). Cell wall construction in Saccharomyces cerevisiae. Yeast, 23: 185-202. DOI: https://doi.org/10.1002/yea.1349.

Latgé, J.-P. (2007). The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 66: 279-290. DOI: https://doi.org/10.1111/j.1365-2958.2007.05872.x.

Latgé, J.-P. & Beauvais, A. (2014). Functional duality of the cell wall. Current Opinion in Microbiology, 20: 111-117. DOI: https://doi.org/10.1016/j.mib.2014.05.009.

Latgé, J.-P., Mouyna, I., Tekaia, F., Beauvais, A., Debeaupuis, J.P. & Nierman, W. (2005). Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Medical Mycology, 43: 15-22. DOI: https://doi.org/10.1080/13693780400029155.

Lau, A.Y.T., Xie, Y., Cheung, M.K., Cheung, P.C.K. & Kwan, H.S. (2020). Genome-wide mRNA and miRNA analysis in the early stages of germ tube outgrowth in Coprinopsis cinerea. Fungal Genetics and Biology, 142: article number 103416. DOI: https://doi.org/10.1016/j.fgb.2020.103416

Lesage, G. & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70: 317-343. DOI: https://doi.org/10.1128/MMBR.00038-05.

Lew, R.R., Levina, N.N., Walker, S.K. & Garrill, A. (2004). Turgor regulation in hyphal organisms. Fungal Genetics and Biology, 41: 1007-1015. DOI: https://doi.org/10.1016/j.fgb.2004.07.007.

Linder, M.B., Szilvay, G.R., Nakari-Setälä, T. & Penttilä, M.E. (2005). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews, 29: 877-896. DOI: https://doi.org/10.1016/j.femsre.2005.01.004.

Lugones, L.G. Wösten, H.A.B., Birkenkamp, K.U., Sjollema, K.A., Zagers, J. & Wessels, J.G.H. (1999). Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycological Research, 103: 635-640. DOI: https://doi.org/10.1017/S0953756298007552.

Martin-Urdiroz, M., Roncero, I.G., González-Reyes, J.A. & Ruiz-Roldán, C. (2008). ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum f. sp. lycopersici. Eukaryotic Cell, 7: 112-121. DOI: https://doi.org/10.1128/EC.00347-07.

Money, N.P. (2004). The fungal dining habit: a biomechanical perspective. Mycologist, 18: 71-76. DOI: https://doi.org/10.1017/S0269-915X(04)00203-4.

Money, N.P. (2008). Insights on the mechanics of hyphal growth. Fungal Biology Reviews, 22: 71-76. DOI: https://doi.org/10.1016/j.fbr.2008.05.002.

Money, N.P. & Harold, F.M. (1992). Extension growth of the water mold Achlya: interplay of turgor and wall strength. Proceedings of the National Academy of Sciences of the United States of America, 89: 4245-4249. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC49058/pdf/pnas01084-0035.pdf.

Money, N.P. & Harold, F.M. (1993). Two water molds can grow without measurable turgor pressure. Planta, 190: 426-430. DOI: https://doi.org/10.1007/BF00196972.

Moore, D. (2013). Fungal Biology in the Origin and Emergence of Life. Cambridge, UK: Cambridge University Press. 230 pp. ISBN-10: 1107652774, ISBN-13: 978-1107652774. VIEW on Amazon.

Morozov, A.A. & Likhoshway, Y.V. (2016). Evolutionary history of the chitin synthases of eukaryotes. Glycobiology, 26: 635-639. DOI: https://doi.org/10.1093/glycob/cww018.

Mouyna, I., Hartl, L. & Latgé, J.P. (2013). β-1,3-Glucan modifying enzymes in Aspergillus fumigatus. Frontiers in Microbiology, 4: article 81 (9 pp). DOI: https://doi.org/10.3389/fmicb.2013.00081.

Munro, C.A. (2013). Chitin and glucan, the Yin and Yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Advances in Applied Microbiology, 83: 145-172. DOI: https://doi.org/10.1016/B978-0-12-407678-5.00004-0.

Nishimura, M. (2016). Cell wall reorganization during infection in fungal plant pathogens. Physiological and Molecular Plant Pathology, 95: 14-19. DOI: https://doi.org/10.1016/j.pmpp.2016.03.005.

Odds, F.C., Brown, A.J.P. & Gow, N.A.R. (2003). Antifungal agents: mechanisms of action. Trends in Microbiology, 11: 272–279. DOI: https://doi.org/10.1016/S0966-842X(03)00117-3.

Pareek, M., Allaway, W.G. & Ashford, A.E. (2006). Armillaria luteobubalina mycelium develops air pores that conduct oxygen to rhizomorph clusters. Mycological Research, 110: 38-50. DOI: https://doi.org/10.1016/j.mycres.2005.09.006.

Reynolds, T.B. & Fink, G.R. (2001). Bakers’ yeast, a model for fungal biofilm formation. Science, 291: 878-881. DOI: https://doi.org/10.1126/science.291.5505.878.

Riquelme, M., Bartnicki-García, S. González-Prieto, J.M., Sánchez-León, E., Verdín-Ramos, J.A., Beltrán-Aguilar, A. & Freitag, M. (2007). Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryotic Cell, 6: 1853–1864. DOI: https://doi.org/10.1128/EC.00088-07.

Riquelme, M. & Bartnicki-García, S. (2008). Advances in understanding hyphal morphogenesis: Ontogeny, phylogeny and cellular localization of chitin synthases. Fungal Biology Reviews, 22: 56-70. DOI: https://doi.org/10.1016/j.fbr.2008.05.003.

Rogg, L.E., Fortwendel, J.R., Juvvadi, P.R. & Steinbach, W.J. (2012). Regulation of expression, activity and localization of fungal chitin synthases. Medical Mycology, 50: 2-17. DOI: https://doi.org/10.3109/13693786.2011.577104.

Rosenberger, R.F. (1976). The cell wall. In: The Filamentous Fungi, vol 2, Biosynthesis and Metabolism (eds J.E. Smith & D.R. Berry),  pp. 328-344. London: Edward Arnold (Publishers) Ltd. ISBN-10: 0713125373, ISBN-13: 978-0713125375. VIEW on Amazon.

Scholtmeijer, K., Rink, R., Hektor, H.J. & Wösten, H.A.B. (2005). Expression and engineering of fungal hydrophobins. Applied Mycology and Biotechnology, 5: 239-255. DOI: https://doi.org/10.1016/S1874-5334(05)80012-7.

Schuster, M., Martin-Urdiroz, M., Higuchi, Y., Hacker, C., Kilaru, S., Gurr, S.J. & Steinberg, G. (2016). Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nature Microbiology, 1: 16149. DOI: https://doi.org/10.1038/nmicrobiol.2016.149.

Schuster, M., Treitschke, S., Kilaru, S., Molloy, J., Harmer, N.J. & Steinberg, G. (2012). Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO Journal, 31: 214-227. DOI: https://doi.org/10.1038/emboj.2011.361.

Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22: 36-42. DOI: https://doi.org/10.1016/j.fbr.2008.03.002.

Singh, P.K., Singh, M. & Tripathi, B.N. (2013). Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250: 663-669. DOI: https://doi.org/10.1007/s00709-012-0453-z.

Singh, R., Shivaprakash, M.R. & Chakrabarti, A. (2011). Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology, 157: 2611-2618. DOI: https://doi.org/10.1099/mic.0.048504-0.

Steinberg, G. (2007). Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryotic Cell, 6: 351-360. DOI: https://doi.org/10.1128/EC.00381-06.

Steinberg, G. (2011). Motors in fungal morphogenesis: cooperation versus competition. Current Opinion in Microbiology, 14: 660-667. DOI: https://doi.org/10.1016/j.mib.2011.09.013.

Sunde, M., Kwan, A.H.Y., Templeton, M.D., Beever, R.E. & Mackay, J.P. (2008). Structural analysis of hydrophobins. Micron, 39: 773-784. DOI: https://doi.org/10.1016/j.micron.2007.08.003.

Taborda, C.P., da Silva, M.B., Nosanchuk, J.D. & Travassos, L.R. (2008). Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia, 165: 331-339. DOI: https://doi.org/10.1007/s11046-007-9061-4.

Treitschke, S., Doehlemann, G., Schuster, M. & Steinberg, G. (2010). The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell, 22: 2476-2494. DOI: https://doi.org/10.1105/tpc.110.075028.

Trinci, A. P. J. (1978). Wall and hyphal growth. Science Progress, 65: 75-99. URL: http://www.jstor.org/stable/43420445.

Waters, H., Butler, R.D. & Moore, D. (1972). Thick-walled sclerotial medullary cells in Coprinus lagopus. Transactions of the British Mycological Society, 59: 167-169. DOI: https://doi.org/10.1016/S0007-1536(72)80059-7. CLICK here to download full-text PDF.

Waters, H., Butler, R.D. & Moore, D. (1975a). Structure of aerial and submerged sclerotia of Coprinus lagopus. New Phytologist, 74: 199-205. URL: http://www.jstor.org/stable/2431389. CLICK here to download full-text PDF.

Waters, H., Moore, D. & Butler, R.D. (1975b). Morphogenesis of aerial sclerotia of Coprinus lagopus. New Phytologist, 74: 207-213. URL: http://www.jstor.org/stable/2431390. CLICK here to download full-text PDF.

Werner, S., Sugui, J.A., Steinberg, G. & Deising, H.B. (2007). A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Molecular Plant-Microbe Interactions, 20: 1555-1567. DOI: https://doi.org/10.1094/MPMI-20-12-1555.

Wessels, J.G.H. (1993). Wall growth, protein excretion and morphogenesis in fungi. New Phytologist, 123: 397-413. URL: http://www.jstor.org/stable/2557792.

Wessels, J.G.H. (1996). Fungal hydrophobins: proteins that function at an interface. Trends in Plant Science, 1: 9-15. DOI: https://doi.org/10.1016/S1360-1385(96)80017-3.

Wösten, H.A.B. & de Vocht, M.L. (2000). Hydrophobins, the fungal coat unravelled. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469: 79-86. DOI: https://doi.org/10.1016/S0304-4157(00)00002-2.

Xie, X. & Lipke, P.N. (2010). On the evolution of fungal and yeast cell walls. Yeast, 27: 479-488. DOI: https://doi.org/10.1002/yea.1787.

Xie, Y., Chang, J.·& Kwan, H.S. (2020) Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Fungal Genetics and Biology, 143: article 103432. DOI: https://doi.org/10.1016/j.fgb.2020.103432.

Yang, Y., He, C., Huang, L., Ban, Y. & Tang, M. (2017). The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE, 12: e0182264. DOI: https://doi.org/10.1371/journal.pone.0182264.

Yin, Q.Y., de Groot, P.W.J., de Koster C.G. & Klis, F.M. (2007). Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends in Microbiology, 16: 20-26. DOI: https://doi.org/https://doi.org/10.1016/j.tim.2007.10.011.

Zhang, J., Tang, X., Zhong, S., Yin, G., Gao, Y. & He, X. (2017). Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests. Scientific Reports, 7: article number, 2391. DOI: https://doi.org/10.1038/s41598-017-02486-6.

Zhou, J., Kang, L., Liu, C., Niu, X., Wang, X., Liu, H., Zhang, W., Liu, Z., Latgé, J.-P. & Yuan, S. (2019). Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinerea. Applied and Environmental Microbiology, 85: article number e00532-19. DOI: https://doi.org/10.1128/AEM.00532-19.

Updated June, 2021